snowflake-arctic-instruct

snowflake-arctic-instruct

探索混合变换架构在企业AI中的高效应用

Snowflake Arctic由AI研究团队开发,是一种将稠密变换器与稀疏门控混合架构结合的模型,提供开源的LLM解决方案。Arctic的模型汇集合计480亿参数,支持Arctic-Base和Arctic-Instruct版本,适用于研究和产品开发。通过DeepSpeed和transformers库的配合,支持自定义代码,实现文本和代码生成。Arctic的教程和cookbook帮助用户定制混合架构模型并优化训练数据质量。

Github开源项目推理示例Arctic模型架构量化配置Huggingface训练数据模型

项目简介

Snowflake-Arctic-Instruct项目由Snowflake AI研究团队创建,是一种混合架构的transformer模型,采用密集-莫领域专家(MoE)的方式进行构建。Arctic模型分为基础版和指导调优版,目前已按照Apache-2.0许可证发布,允许自由使用这些模型进行研究、原型开发和产品应用。感兴趣的用户可以查看Snowflake官网博客获取更多信息,博客中包括了如何训练自定义MoE模型、生成高质量训练数据等多个方面的指南。

Snowflake还在其GitHub仓库中提供了详细的教程、代码示例等资料:

用户还可以通过Streamlit应用亲自体验模型的功能。

模型架构

Arctic结合了一个具有10B参数的密集transformer模型以及一个具备128x3.66B参量的MoE多层感知机,整体参数总数高达480B,但每次仅激活17B参数进行运算。通过这种Top-2门控方式,达到了计算效率与资源利用的平衡。关于模型架构的更多详细信息,如训练过程和数据使用情况,建议参考博客系列指南

使用方法

目前,Arctic已支持通过transformers库进行使用,用户只需在调用AutoTokenizerAutoModelForCausalLM时添加trust_remote_code=True即可。建议使用新版transformers库(版本4.39或以上):

pip install transformers>=4.39.0

Arctic利用了一些DeepSpeed库的特性,因此需要安装DeepSpeed 0.14.2或更高版本:

pip install deepspeed>=0.14.2

推理示例

由于模型规模较大,建议使用像AWS p5.48xlarge或Azure ND96isr_H100_v5这样的高性能云实例来进行推理。在示例中,后台使用DeepSpeed提供的FP8量化,并可以通过指定q_bits=6实现FP6量化,同时对于max_memory参数设置为"150GiB"以支持FP量化。以下是使用实例代码:

import os # 启用rapid下载功能 os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import torch from transformers import AutoModelForCausalLM, AutoTokenizer from deepspeed.linear.config import QuantizationConfig tokenizer = AutoTokenizer.from_pretrained( "Snowflake/snowflake-arctic-instruct", trust_remote_code=True ) quant_config = QuantizationConfig(q_bits=8) model = AutoModelForCausalLM.from_pretrained( "Snowflake/snowflake-arctic-instruct", trust_remote_code=True, low_cpu_mem_usage=True, device_map="auto", ds_quantization_config=quant_config, max_memory={i: "150GiB" for i in range(8)}, torch_dtype=torch.bfloat16) content = "5x + 35 = 7x - 60 + 10. Solve for x" messages = [{"role": "user", "content": content}] input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda") outputs = model.generate(input_ids=input_ids, max_new_tokens=256) print(tokenizer.decode(outputs[0]))

有关推理的更多代码示例,可前往Arctic的GitHub页面查阅:

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多