stella

stella

支持长文本的通用中文文本编码模型

stella是一个通用中文文本编码模型,提供base和large两个版本,支持1024长度输入。模型采用多样化训练数据和先进方法,包括对比学习、难负例处理和EWC技术。在C-MTEB基准测试中表现优异,特别是长文本编码能力突出。适用于文本分类、聚类和检索等多种自然语言处理任务。

stella模型中文文本编码长文本处理C-MTEB向量嵌入Github开源项目

stella 模型

stella是一个通用的中文文本编码模型,目前有两个版本:base 和 large,两个版本的模型均支持1024的输入长度

完整的训练思路和训练过程已记录在博客,欢迎阅读讨论。

训练数据:

  1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),重点选择了长度大于512的文本
  2. 在通用语料库上使用大型语言模型构造了一批(问题, 段落)和(句子, 段落)数据

训练方法:

  1. 对比学习损失函数
  2. 带有难负例的对比学习损失函数(分别基于bm25和向量构造了难负例)
  3. EWC(弹性权重整合)[4]
  4. cosent损失[5]
  5. 每种类型的数据使用一个迭代器,分别计算损失进行更新

初始权重: stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的位置嵌入使用层次分解位置编码[7]进行初始化。 感谢商汤科技研究院开源的piccolo系列模型

stella是一个通用中文文本编码模型,目前有两个版本:base和large,两个版本均支持1024的输入长度。

训练数据主要包括:

  1. 开源训练数据(wudao_base_200GB、m3e和simclue),重点选择了长度大于512的文本。
  2. 在通用语料库上使用大型语言模型构造的一批(问题,段落)和(句子,段落)数据。

损失函数主要包括:

  1. 对比学习损失函数
  2. 带有难负例的对比学习损失函数(基于bm25和向量构造难负例)
  3. EWC(弹性权重整合)
  4. cosent损失

模型权重初始化: stella-base-zh和stella-large-zh分别使用piccolo-base-zh和piccolo-large-zh作为基础模型,512-1024位置嵌入使用层次分解位置编码的初始化策略。

训练策略: 每种类型的数据使用一个迭代器,分别计算损失。

项目文件说明

./run_train.py # 训练脚本
./src/add_new_pos_embed.py # 扩展现有模型长度的脚本
./src/run_eval_stella.py # 评估cmteb效果的脚本

指标

C-MTEB 排行榜

stella模型在C-MTEB[8]的结果,评测脚本请参见博客。

模型名称模型大小 (GB)维度序列长度平均 (35)分类 (9)聚类 (4)对分类 (2)重排序 (4)检索 (8)语义相似度 (8)
stella-large-zh0.651024102464.5467.6248.6578.7265.9871.0258.3
stella-base-zh0.2768102464.1667.7748.776.0966.9571.0756.54
piccolo-large-zh0.65102451264.1167.0347.0478.3865.9870.9358.02
bge-large-zh1.3102451263.9668.3248.3978.9465.1171.5254.98
piccolo-base-zh0.276851263.6666.9847.1276.6166.6871.255.9
bge-large-zh-no-instruct1.3102451263.468.5850.0176.7764.970.5453
bge-base-zh0.4176851262.867.0747.6477.564.9169.5354.12

长文本评估

通过实际观察发现,C-MTEB的评测数据长度基本都小于512, 更关键的是那些长度大于512的文本,其重点都在前半部分。 这里以CMRC2018的数据为例说明这个问题:

问题:《无双大蛇z》是谁旗下ω-force开发的动作游戏?

段落:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......

段落长度为800多,大于512,但对于这个问题而言只需要前面40个字就足以检索,多余的内容对模型来说是一种噪声,反而降低了效果。 简言之,现有数据集的两个问题: 1)长度大于512的数据过少 2)即便大于512,对于检索而言也只需要前512的文本内容 导致无法准确评估模型的长文本编码能力。

为解决这个问题,我们收集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,分别是:

  • CMRC2018,通用百科
  • CAIL,法律阅读理解
  • DRCD,繁体百科,已转简体
  • Military,军工问答
  • Squad,英文阅读理解,已转中文
  • Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]

处理规则是选取答案在512长度之后的文本,短的测试数据会进行欠采样,长短文本占比约为1:2,因此模型既需要理解短文本也需要理解长文本。 除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing

评测指标为Recall@5,结果如下:

数据集piccolo-base-zhpiccolo-large-zhbge-base-zhbge-large-zhstella-base-zhstella-large-zh
CMRC201894.3493.8291.5693.1296.0895.56
CAIL28.0433.6431.2233.9434.6237.18
DRCD78.2577.978.3480.2686.1484.58
Military76.6173.0675.6575.8183.7180.48
Squad91.2186.6187.8790.3893.3191.21
Multifieldqa_zh81.4183.9283.9283.4279.980.4
平均74.9874.8374.7676.1578.9678.24
注意: 由于长文本评估数据数量有限,在构建时也使用了训练部分数据。如果您自行评估,请注意模型的训练数据以避免数据泄露。

使用方法

本模型是在piccolo基础上训练的,因此使用方法与piccolo完全相同
注意:在stella中,指令中的冒号是英文冒号,即查询: 结果:

在sentence-transformer库中的使用方法:

# 对于短对短数据集,以下是通用的使用方式 from sentence_transformers import SentenceTransformer sentences = ["数据1", "数据2"] model = SentenceTransformer('infgrad/stella-base-zh') print(model.max_seq_length) embeddings_1 = model.encode(sentences, normalize_embeddings=True) embeddings_2 = model.encode(sentences, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) # 如果是短对长数据集,建议添加指令,以帮助模型更好地进行检索。 # 注意指令中使用的是英文冒号

直接使用transformers库:

from transformers import AutoModel, AutoTokenizer from sklearn.preprocessing import normalize model = AutoModel.from_pretrained('infgrad/stella-base-zh') tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh') sentences = ["数据1", "数据ABCDEFGH"] batch_data = tokenizer( batch_text_or_text_pairs=sentences, padding="longest", return_tensors="pt", max_length=1024, truncation=True, ) attention_mask = batch_data["attention_mask"] model_output = model(**batch_data) last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] vectors = normalize(vectors, norm="l2", axis=1, ) print(vectors.shape) # 2,768

训练细节

硬件: 单卡A100-80GB

环境: torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing

学习率: 1e-6

批量大小: base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例

数据量: 约100万,其中用LLM构造的数据约有200K。LLM模型大小为13b

待办事项

评测的稳定性: 在评测过程中发现聚类任务的结果与官方结果不完全一致,存在约±0.0x的小差异,基本可以忽略不计,不影响评测结论。
但是不完全一致仍然难以理解,本人尝试了bge和piccolo系列的模型,都存在这个问题。个人猜测可能与使用的库、批量大小等环境有关。

更高质量的长文本训练和测试数据: 训练数据大多是用13b模型构造的,肯定存在噪声。 测试数据基本都是从机器阅读理解数据整理而来,因此问题都是事实型的,不符合真实分布。

域外性能: 尽管最近出现了许多向量编码模型,但对于不太通用的领域,这些模型(包括stella、openai和cohere)的效果都不如BM25。

参考文献

  1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
  2. https://github.com/wangyuxinwhy/uniem
  3. https://github.com/CLUEbenchmark/SimCLUE
  4. https://arxiv.org/abs/1612.00796
  5. https://kexue.fm/archives/8847
  6. https://huggingface.co/sensenova/piccolo-base-zh
  7. https://kexue.fm/archives/7947
  8. https://github.com/FlagOpen/FlagEmbedding
  9. https://github.com/THUDM/LongBench

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多