FastDiff

FastDiff

高效生成高保真语音的快速条件扩散模型

FastDiff项目实现了一种高效生成高保真语音的条件扩散模型。该项目在GitHub上提供了开源实现和预训练模型,支持包括LJSpeech、LibriTTS和VCTK在内的多种数据集。适用于语音合成和神经语音编解码等任务,并支持多GPU并行训练。项目还提供了详细的推理和训练指南,以及预处理工具和训练配置示例。FastDiff代码参考了NATSpeech和Tacotron2等项目,广泛适用于研究和实际应用。

FastDiff高保真语音合成条件扩散模型PyTorch语音合成Github开源项目

FastDiff: 高质量语音合成的快速条件扩散模型

<div align=center> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/d8a0af52-378f-4ea9-9caf-4c735c8393f0.gif" alt="drawing" style="width:250px; "/> </div>

黄荣杰, 林永愉, 王军, 苏丹, 余东, 任怡, 赵洲

这是FastDiff (IJCAI'22)在PyTorch上的实现:一种能够高效生成高保真语音的条件扩散概率模型。

arXiv GitHub Stars visitors Hugging Face

我们在此仓库中提供了我们的实现和预训练模型并作为开源项目发布。

访问我们的演示页面以获取音频样例。

我们的后续工作可能也会引起你的兴趣:ProDiff (ACM Multimedia'22) GitHub

新闻

  • 2021年4月22日:FastDiff 被 IJCAI 2022 接受。
  • 2022年6月21日:提供了 LJSpeech 检查点和演示代码。
  • 2022年8月12日:提供了 VCTK/LibriTTS 检查点。
  • 2022年8月25日:提供了 FastDiff (tacotron)
  • 2022年9月:我们发布了后续工作 ProDiff (ACM Multimedia'22) GitHub,进一步优化了速度和质量的权衡。

快速开始

我们提供了一个示例,展示了如何使用FastDiff生成高保真的样本。

要在自己的数据集中尝试,只需在本地机器上克隆此仓库,并且需要 NVIDIA GPU + CUDA cuDNN,然后遵循以下说明。

支持的数据集和预训练模型

你还可以使用我们在这里提供的预训练模型。 每个文件夹的详细信息如下:

数据集配置文件
LJSpeechmodules/FastDiff/config/FastDiff.yaml
LibriTTSmodules/FastDiff/config/FastDiff_libritts.yaml
VCTKmodules/FastDiff/config/FastDiff_vctk.yaml
LJSpeech(Tacotron)modules/FastDiff/config/FastDiff_tacotron.yaml

很快会支持更多的数据集。

将检查点放在 checkpoints/$your_experiment_name/model_ckpt_steps_*.ckpt

依赖项

请参见 requirement.txt 中的要求:

多GPU支持

默认情况下,该实现使用 torch.cuda.device_count() 返回的所有 GPU 并行使用。 你可以在运行训练模块之前,通过设置 CUDA_DEVICES_AVAILABLE 环境变量来指定使用哪些 GPU。

文本到语音合成的推理

使用 ProDiff

我们在 Hugging FaceGitHub 提供了更高效和稳定的管道。

使用 Tacotron

下载 LJSpeech 检查点以对 Tacotron 输出进行神经声码转换 here。 我们在 egs/demo_tacotron.ipynb 中提供了一个演示。

使用 Portaspeech、DiffSpeech、FastSpeech 2

  1. 下载LJSpeech检查点并将其放入 checkpoint/FastDiff/model_ckpt_steps_*.ckpt
  2. 指定输入 $text,并选择 TTS 模型的整数类型索引 $model_index0(Portaspeech, 任等人),1(FastSpeech 2, 任等人),或 2(DiffSpeech, 刘等人)。
  3. 设置逆向采样的 N,这在质量和速度之间进行权衡。
  4. 运行以下命令。
CUDA_VISIBLE_DEVICES=$GPU python egs/demo_tts.py --N $N --text $text --model $model_index

生成的 wav 文件默认保存在 checkpoints/FastDiff/ 中。<br> 注意:为了获得更好的质量,推荐对 FastDiff 模型进行微调。

从 wav 文件推理

  1. 创建 wavs 目录并将 wav 文件复制到该目录。
  2. 设置逆向采样的 N,这在质量和速度之间进行权衡。
  3. 运行以下命令。
CUDA_VISIBLE_DEVICES=$GPU python tasks/run.py --config $path/to/config --exp_name $your_experiment_name --infer --hparams='test_input_dir=wavs,N=$N'

生成的 wav 文件默认保存在 checkpoints/$your_experiment_name/ 中。<br>

端到端语音合成推理

  1. 创建 mels 目录并将生成的梅尔频谱文件复制到该目录。<br> 你可以使用Tacotron2Glow-TTS等生成梅尔频谱。
  2. 设置逆向采样的 N,这在质量和速度之间进行权衡。
  3. 运行以下命令。
CUDA_VISIBLE_DEVICES=$GPU python tasks/run.py --config $path/to/config --exp_name $your_experiment_name --infer --hparams='test_mel_dir=mels,use_wav=False,N=$N'

生成的 wav 文件默认保存在 checkpoints/$your_experiment_name/ 中。<br>

注意:如果发现输出的 wav 文件有噪音,很可能是因为声学和声码器模型之间的梅尔预处理不匹配。

训练你自己的模型

数据准备和配置

  1. 在配置文件中设置 raw_data_dir, processed_data_dir, binary_data_dir。对于自定义数据集,请在 modules/FastDiff/config/base.yaml 中指定音频预处理的配置。
  2. 将数据集下载到 raw_data_dir。注意:数据集结构需要遵循 egs/datasets/audio/*/pre_align.py,或者你可以根据你的数据集重写 pre_align.py
  3. 预处理数据集
# 预处理步骤:统一文件结构。 python data_gen/tts/bin/pre_align.py --config $path/to/config # 二值化步骤:二值化数据以提高IO效率。 CUDA_VISIBLE_DEVICES=$GPU python data_gen/tts/bin/binarize.py --config $path/to/config

我们还提供了处理过的LJSpeech数据集 here

训练细化网络

CUDA_VISIBLE_DEVICES=$GPU python tasks/run.py --config $path/to/config --exp_name $your_experiment_name --reset

训练噪声预测器网络(可选)

请参考Bilateral Denoising Diffusion Models (BDDMs)

噪声调度(可选)

你可以此时使用我们预先推导的噪声调度,或者参考Bilateral Denoising Diffusion Models (BDDMs)

推理

CUDA_VISIBLE_DEVICES=$GPU python tasks/run.py --config $path/to/config --exp_name $your_experiment_name --infer

致谢

此实现使用了以下GitHub仓库的部分代码: NATSpeechTacotron2,和 DiffWave-Vocoder 如我们的代码中所述。

引用

如果你在研究中发现此代码有用,请考虑引用:

@article{huang2022fastdiff,
  title={FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech Synthesis},
  author={Huang, Rongjie and Lam, Max WY and Wang, Jun and Su, Dan and Yu, Dong and Ren, Yi and Zhao, Zhou},
  booktitle = {Proceedings of the Thirty-First International Joint Conference on
               Artificial Intelligence, {IJCAI-22}},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  year={2022}
}

免责声明

  • 这不是一个腾讯官方支持的产品。

  • 任何组织或个人禁止在未经他人同意的情况下使用本文提及的任何技术生成某人的语音,包括但不限于政府领导人、政治人物和名人。如果你不遵守此条款,可能会违反版权法。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多