rwkv-4-169m-pile

rwkv-4-169m-pile

RNN与Transformer的高性能结合:高效文本生成

RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。

RWKVGithub开源项目文本生成转换脚本人工神经网络GPUHuggingface模型

项目介绍:rwkv-4-169m-pile

rwkv-4-169m-pile 是一个由 Bo Peng 领导的项目,目标是开发一种高效的语言模型。这个项目建立在 EleutherAI 的“Pile”数据集之上,该数据集是一个大规模、多用途的文本数据集。

项目背景

RWKV 是一种结合了循环神经网络(RNN)和 Transformer 模型性能的架构设计。它能够像 GPT 模型那样进行并行训练,结合了 RNN 和 Transformer 最优的特性,从而在快速推理、节省显存、快速训练等方面表现出色。此外,它拥有“无限”上下文长度以及免费的句子嵌入能力,使其在大文本处理任务上具有明显优势。

模型细节

关于 RWKV 模型架构的细节分析,读者可以通过 Johan Wind 的博客获取更多信息。此外,Hugging Face 也提供了关于 RWKV 和 Transformer 模型整合的博客文章。

如何使用

转换模型权重

可以使用 convert_rwkv_checkpoint_to_hf.py 脚本将 RWKV 的原始权重转换为 Hugging Face 模型格式。这需要指定原始权重的库标识、文件名和输出目录。转换完成后,还可以直接将转换后的模型推送到 Hugging Face 的模型中心。示例命令如下:

python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv

文本生成

使用 AutoModelForCausalLMAutoTokenizer 类可以从模型中生成文本。以下是一些使用指南:

  • 在 CPU 上运行模型:

    如果要在 CPU 上运行,可以参考以下代码片段:

    from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
  • 在单个 GPU 上运行模型:

    如果希望利用 GPU 优化计算性能,可以使用下述代码:

    from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile").to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
  • 在半精度模式下运行模型(利用GPU):

    通过启用半精度模式,可以显著减少模型所需的计算资源:

    import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile", torch_dtype=torch.float16).to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
  • 在多个 GPU 上运行模型:

    利用多 GPU 进行分布式计算,可以进一步提升大规模文本生成的效率:

    # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

引用

如果您在工作中使用了此模型,请考虑引用原始工作。完整的项目和详细信息可以在 原始 GitHub 仓库 中找到。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多