
AMD开源计算机视觉和机器智能开发工具包
MIVisionX是一套开源的计算机视觉和机器智能开发工具包。它包含优化的OpenVX实现、神经网络模型编译器和多种实用工具。支持ONNX和NNEF格式,可在嵌入式设备到高性能服务器等多种硬件平台上部署计算机视觉和机器学习应用。
MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized conformant open-source implementation of the <a href="https://www.khronos.org/openvx/" target="_blank">Khronos OpenVX™</a> and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting <a href="https://onnx.ai/" target="_blank">ONNX</a>, and <a href="https://www.khronos.org/nnef" target="_blank">Khronos NNEF™</a> exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning inference workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.
AMD OpenVX™ is a highly optimized conformant open source implementation of the <a href="https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html" target="_blank">Khronos OpenVX™ 1.3</a> computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.
<a href="https://www.khronos.org/registry/OpenVX/specs/1.0.1/html/index.html" target="_blank">Khronos OpenVX™ 1.0.1</a> conformant implementation is available in MIVisionX Lite
The OpenVX framework provides a mechanism to add new vision functionality to OpenVX by vendors. This project has below listed OpenVX modules and utilities to extend amd_openvx, which contains the AMD OpenVX™ Core Engine.
<p align="center"><img width="70%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-OpenVX-Extensions.png" /></p>vision / generic / user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This extension aims to help developers to build an end to end application for inference.MIVisionX has several applications built on top of OpenVX modules. These applications can serve as excellent prototypes and samples for developers to build upon.
<p align="center"><img width="90%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-applications.png" /></p>Neural net model compiler and optimizer converts pre-trained neural net models to MIVisionX runtime code for optimized inference.
The ROCm Augmentation Library - rocAL is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.
rocAL is now available as an independent module at https://github.com/ROCm/rocAL. rocAL is deprecated in MIVisionX.
MIVisionX Toolkit is a comprehensive set of helpful tools for neural net creation, development, training, and deployment. The Toolkit provides useful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit has been designed to help you deploy your work on any AMD or 3rd party hardware, from embedded to servers.
MIVisionX toolkit provides tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.
Mobile/Embedded [optional][!IMPORTANT] Some modules in MIVisionX can be built for
CPU ONLY. To take advantage ofAdvanced Features And Moduleswe recommend usingAMD GPUsorAMD APUs.
20.04 / 22.0478 / 915-SP510 / 1113 / Sonoma 14The installation process uses the following steps:
ROCm-supported hardware install verification
Install ROCm 6.1.0 or later with amdgpu-install with --usecase=rocm
Use either Package install or Source install as described below.
Install MIVisionX runtime, development, and test packages.
mivisionx only provides the dynamic libraries and executablesmivisionx-dev/mivisionx-devel provides the libraries, executables, header files, and samplesmivisionx-test provides ctest to verify installationsudo apt-get install mivisionx mivisionx-dev mivisionx-test
sudo yum install mivisionx mivisionx-devel mivisionx-test
sudo zypper install mivisionx mivisionx-devel mivisionx-test
[!IMPORTANT]
- Package install supports
HIPbackend- Package install requires
OpenCV V4.6manual installCentOS/RedHat/SLESrequiresFFMPEG Devpackage manual install
For your convenience, we provide the setup script, MIVisionX-setup.py, which installs all required dependencies.
python MIVisionX-setup.py --directory [setup directory - optional (default:~/)] --opencv [OpenCV Version - optional (default:4.6.0)] --ffmpeg [FFMPEG Installation - optional (default:ON) [options:ON/OFF]] --amd_rpp [MIVisionX VX RPP Dependency Install - optional (default:ON) [options:ON/OFF]] --neural_net[MIVisionX Neural Net Dependency Install - optional (default:ON) [options:ON/OFF]] --inference [MIVisionX Inference Dependency Install - optional (default:ON) [options:ON/OFF]] --developer [Setup Developer Options - optional (default:OFF) [options:ON/OFF]] --reinstall [Remove previous setup and reinstall (default:OFF)[options:ON/OFF]] --backend [MIVisionX Dependency Backend - optional (default:HIP) [options:HIP/OCL/CPU]] --rocm_path [ROCm Installation Path - optional (default:/opt/rocm ROCm Installation Required)]
[!NOTE]
- Install ROCm before running the setup script
- This script only needs to be executed once
- ROCm upgrade requires the setup script rerun
Clone MIVisionX git repository
git clone https://github.com/ROCm/MIVisionX.git
[!IMPORTANT] MIVisionX has support for two GPU backends: OPENCL and HIP
Instructions for building MIVisionX with the HIP GPU backend (default backend):
cd MIVisionX python MIVisionX-setup.py
mkdir build-hip cd build-hip cmake ../ make -j8 sudo make install
make test
Instructions for building MIVisionX with OPENCL GPU backend
OpenCV_DIR environment variable to OpenCV/build folder%OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATHMIVisionX.sln to build for x64 platform[!IMPORTANT] Some modules in MIVisionX are only supported on Linux
macOS build instructions
[!IMPORTANT] macOS only supports MIVisionX CPU backend
/opt/rocm/bin/opt/rocm/lib/opt/rocm/include/mivisionx/opt/rocm/share/mivisionx/opt/rocm/share/doc/mivisionx/opt/rocm/libexec/mivisionxCanny Edge Detection
<p align="center"><img width="60%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/samples/images/canny_image.PNG" /></p>export PATH=$PATH:/opt/rocm/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib runvx /opt/rocm/share/mivisionx/samples/gdf/canny.gdf
[!NOTE]
- More samples are available here
- For
macOSuseexport DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/rocm/lib
Test package will install ctest module to test MIVisionX. Follow below steps to test packge install
mkdir mivisionx-test && cd mivisionx-test cmake /opt/rocm/share/mivisionx/test/ ctest -VV
MIVisionX.sln builds the libraries & executables in the folder MIVisionX/x64
Use RunVX to test the build
./runvx.exe ADD_PATH_TO/MIVisionX/samples/gdf/skintonedetect.gdf
MIVisionX provides developers with docker images for Ubuntu 20.04 / 22.04. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.
Docker files to build MIVisionX containers and suggested workflow are available
Run the steps below to build documentation locally.
cd docs pip3 install -r sphinx/requirements.txt python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
doxygen .Doxyfile
Please email mivisionx.support@amd.com for questions, and feedback on MIVisionX.
Please submit your feature requests, and bug reports on the GitHub issues page.
Review all notable changes with the latest release


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号