MIVisionX

MIVisionX

AMD开源计算机视觉和机器智能开发工具包

MIVisionX是一套开源的计算机视觉和机器智能开发工具包。它包含优化的OpenVX实现、神经网络模型编译器和多种实用工具。支持ONNX和NNEF格式,可在嵌入式设备到高性能服务器等多种硬件平台上部署计算机视觉和机器学习应用。

MIVisionXOpenVX计算机视觉机器学习AMDGithub开源项目

MIT licensed doc

<p align="center"><img width="70%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX.png" /></p>

MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized conformant open-source implementation of the <a href="https://www.khronos.org/openvx/" target="_blank">Khronos OpenVX™</a> and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting <a href="https://onnx.ai/" target="_blank">ONNX</a>, and <a href="https://www.khronos.org/nnef" target="_blank">Khronos NNEF™</a> exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning inference workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.

Latest release

GitHub tag (latest SemVer)

AMD OpenVX™

<p align="center"><img width="30%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/OpenVX_logo.png" /></p>

AMD OpenVX™ is a highly optimized conformant open source implementation of the <a href="https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html" target="_blank">Khronos OpenVX™ 1.3</a> computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.

<a href="https://www.khronos.org/registry/OpenVX/specs/1.0.1/html/index.html" target="_blank">Khronos OpenVX™ 1.0.1</a> conformant implementation is available in MIVisionX Lite

AMD OpenVX™ Extensions

The OpenVX framework provides a mechanism to add new vision functionality to OpenVX by vendors. This project has below listed OpenVX modules and utilities to extend amd_openvx, which contains the AMD OpenVX™ Core Engine.

<p align="center"><img width="70%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-OpenVX-Extensions.png" /></p>
  • amd_loomsl: AMD Loom stitching library for live 360 degree video applications
  • amd_media: AMD media extension module is for encode and decode applications
  • amd_migraphx: AMD MIGraphX extension integrates the <a href="https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#amd-migraphx" target="_blank"> AMD's MIGraphx </a> into an OpenVX graph. This extension allows developers to combine the vision funcions in OpenVX with the MIGraphX and build an end-to-end application for inference.
  • amd_nn: OpenVX neural network module
  • amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX kernels
  • amd_rpp: OpenVX extension providing an interface to some of the ROCm Performance Primitives (RPP) functions. This extension enables rocAL to perform image augmentation.
  • amd_winml: AMD WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX graph and add hundreds of different pre & post processing vision / generic / user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This extension aims to help developers to build an end to end application for inference.

Applications

MIVisionX has several applications built on top of OpenVX modules. These applications can serve as excellent prototypes and samples for developers to build upon.

<p align="center"><img width="90%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-applications.png" /></p>

Neural network model compiler and optimizer

<p align="center"><img width="80%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/modelCompilerWorkflow.png" /></p>

Neural net model compiler and optimizer converts pre-trained neural net models to MIVisionX runtime code for optimized inference.

rocAL

The ROCm Augmentation Library - rocAL is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.

rocAL is now available as an independent module at https://github.com/ROCm/rocAL. rocAL is deprecated in MIVisionX.

Toolkit

MIVisionX Toolkit is a comprehensive set of helpful tools for neural net creation, development, training, and deployment. The Toolkit provides useful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit has been designed to help you deploy your work on any AMD or 3rd party hardware, from embedded to servers.

MIVisionX toolkit provides tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.

Utilities

  • loom_shell: an interpreter to prototype 360 degree video stitching applications using a script
  • mv_deploy: consists of a model-compiler and necessary header/.cpp files which are required to run inference for a specific NeuralNet model
  • RunCL: command-line utility to build, execute, and debug OpenCL programs
  • RunVX: command-line utility to execute OpenVX graph described in GDF text file

Prerequisites

Hardware

[!IMPORTANT] Some modules in MIVisionX can be built for CPU ONLY. To take advantage of Advanced Features And Modules we recommend using AMD GPUs or AMD APUs.

Operating System

Linux

  • Ubuntu - 20.04 / 22.04
  • CentOS - 7
  • RedHat - 8 / 9
  • SLES - 15-SP5

Windows

  • Windows 10 / 11

macOS

  • macOS - Ventura 13 / Sonoma 14

Installation instructions

Linux

The installation process uses the following steps:

Package install

Install MIVisionX runtime, development, and test packages.

  • Runtime package - mivisionx only provides the dynamic libraries and executables
  • Development package - mivisionx-dev/mivisionx-devel provides the libraries, executables, header files, and samples
  • Test package - mivisionx-test provides ctest to verify installation
Ubuntu
sudo apt-get install mivisionx mivisionx-dev mivisionx-test
CentOS / RedHat
sudo yum install mivisionx mivisionx-devel mivisionx-test
SLES
sudo zypper install mivisionx mivisionx-devel mivisionx-test

[!IMPORTANT]

  • Package install supports HIP backend
  • Package install requires OpenCV V4.6 manual install
  • CentOS/RedHat/SLES requires FFMPEG Dev package manual install

Source install

Prerequisites setup script

For your convenience, we provide the setup script, MIVisionX-setup.py, which installs all required dependencies.

python MIVisionX-setup.py --directory [setup directory - optional (default:~/)] --opencv [OpenCV Version - optional (default:4.6.0)] --ffmpeg [FFMPEG Installation - optional (default:ON) [options:ON/OFF]] --amd_rpp [MIVisionX VX RPP Dependency Install - optional (default:ON) [options:ON/OFF]] --neural_net[MIVisionX Neural Net Dependency Install - optional (default:ON) [options:ON/OFF]] --inference [MIVisionX Inference Dependency Install - optional (default:ON) [options:ON/OFF]] --developer [Setup Developer Options - optional (default:OFF) [options:ON/OFF]] --reinstall [Remove previous setup and reinstall (default:OFF)[options:ON/OFF]] --backend [MIVisionX Dependency Backend - optional (default:HIP) [options:HIP/OCL/CPU]] --rocm_path [ROCm Installation Path - optional (default:/opt/rocm ROCm Installation Required)]

[!NOTE]

  • Install ROCm before running the setup script
  • This script only needs to be executed once
  • ROCm upgrade requires the setup script rerun
Using MIVisionX-setup.py
  • Clone MIVisionX git repository

    git clone https://github.com/ROCm/MIVisionX.git

[!IMPORTANT] MIVisionX has support for two GPU backends: OPENCL and HIP

  • Instructions for building MIVisionX with the HIP GPU backend (default backend):

    • run the setup script to install all the dependencies required by the HIP GPU backend:
    cd MIVisionX python MIVisionX-setup.py
    • run the below commands to build MIVisionX with the HIP GPU backend:
    mkdir build-hip cd build-hip cmake ../ make -j8 sudo make install
    make test
  • Instructions for building MIVisionX with OPENCL GPU backend

Windows

  • Windows SDK
  • Visual Studio 2019 or later
  • Install the latest AMD drivers
  • Install OpenCL SDK
  • Install OpenCV 4.6.0
    • Set OpenCV_DIR environment variable to OpenCV/build folder
    • Add %OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATH

Using Visual Studio

  • Use MIVisionX.sln to build for x64 platform

[!IMPORTANT] Some modules in MIVisionX are only supported on Linux

macOS

macOS build instructions

[!IMPORTANT] macOS only supports MIVisionX CPU backend

Verify installation

Linux / macOS

  • The installer will copy
    • Executables into /opt/rocm/bin
    • Libraries into /opt/rocm/lib
    • Header files into /opt/rocm/include/mivisionx
    • Apps, & Samples folder into /opt/rocm/share/mivisionx
    • Documents folder into /opt/rocm/share/doc/mivisionx
    • Model Compiler, and Toolkit folder into /opt/rocm/libexec/mivisionx

Verify with sample application

Canny Edge Detection

<p align="center"><img width="60%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/samples/images/canny_image.PNG" /></p>
export PATH=$PATH:/opt/rocm/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib runvx /opt/rocm/share/mivisionx/samples/gdf/canny.gdf

[!NOTE]

  • More samples are available here
  • For macOS use export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/rocm/lib

Verify with mivisionx-test package

Test package will install ctest module to test MIVisionX. Follow below steps to test packge install

mkdir mivisionx-test && cd mivisionx-test cmake /opt/rocm/share/mivisionx/test/ ctest -VV

Windows

  • MIVisionX.sln builds the libraries & executables in the folder MIVisionX/x64

  • Use RunVX to test the build

    ./runvx.exe ADD_PATH_TO/MIVisionX/samples/gdf/skintonedetect.gdf

Docker

MIVisionX provides developers with docker images for Ubuntu 20.04 / 22.04. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

Docker files to build MIVisionX containers and suggested workflow are available

MIVisionX docker

Documentation

Run the steps below to build documentation locally.

  • sphinx documentation
cd docs pip3 install -r sphinx/requirements.txt python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
  • Doxygen
doxygen .Doxyfile

Technical support

Please email mivisionx.support@amd.com for questions, and feedback on MIVisionX.

Please submit your feature requests, and bug reports on the GitHub issues page.

Release notes

Latest release version

GitHub tag (latest SemVer)

Changelog

Review all notable changes with the latest release

Tested configurations

  • Windows 10 / 11
  • Linux distribution
    • Ubuntu - 20.04 / 22.04
    • CentOS - 7
    • RHEL - 8 / 9
    • SLES - 15-SP5
  • ROCm: rocm-core - 6.1.0.60100
  • RPP - 1.5.0.60100
  • miopen-hip - 3.1.0.60100
  • migraphx - 2.9.0.60100
  • OpenCV - 4.6.0
  • FFMPEG - n4.4.2
  • Dependencies for all the above packages
  • MIVisionX Setup Script -

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多