
AMD开源计算机视觉和机器智能开发工具包
MIVisionX是一套开源的计算机视觉和机器智能开发工具包。它包含优化的OpenVX实现、神经网络模型编译器和多种实用工具。支持ONNX和NNEF格式,可在嵌入式设备到高性能服务器等多种硬件平台上部署计算机视觉和机器学习应用。
MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized conformant open-source implementation of the <a href="https://www.khronos.org/openvx/" target="_blank">Khronos OpenVX™</a> and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting <a href="https://onnx.ai/" target="_blank">ONNX</a>, and <a href="https://www.khronos.org/nnef" target="_blank">Khronos NNEF™</a> exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning inference workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.
AMD OpenVX™ is a highly optimized conformant open source implementation of the <a href="https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html" target="_blank">Khronos OpenVX™ 1.3</a> computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.
<a href="https://www.khronos.org/registry/OpenVX/specs/1.0.1/html/index.html" target="_blank">Khronos OpenVX™ 1.0.1</a> conformant implementation is available in MIVisionX Lite
The OpenVX framework provides a mechanism to add new vision functionality to OpenVX by vendors. This project has below listed OpenVX modules and utilities to extend amd_openvx, which contains the AMD OpenVX™ Core Engine.
<p align="center"><img width="70%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-OpenVX-Extensions.png" /></p>vision / generic / user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This extension aims to help developers to build an end to end application for inference.MIVisionX has several applications built on top of OpenVX modules. These applications can serve as excellent prototypes and samples for developers to build upon.
<p align="center"><img width="90%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/docs/data/MIVisionX-applications.png" /></p>Neural net model compiler and optimizer converts pre-trained neural net models to MIVisionX runtime code for optimized inference.
The ROCm Augmentation Library - rocAL is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.
rocAL is now available as an independent module at https://github.com/ROCm/rocAL. rocAL is deprecated in MIVisionX.
MIVisionX Toolkit is a comprehensive set of helpful tools for neural net creation, development, training, and deployment. The Toolkit provides useful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit has been designed to help you deploy your work on any AMD or 3rd party hardware, from embedded to servers.
MIVisionX toolkit provides tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.
Mobile/Embedded [optional][!IMPORTANT] Some modules in MIVisionX can be built for
CPU ONLY. To take advantage ofAdvanced Features And Moduleswe recommend usingAMD GPUsorAMD APUs.
20.04 / 22.0478 / 915-SP510 / 1113 / Sonoma 14The installation process uses the following steps:
ROCm-supported hardware install verification
Install ROCm 6.1.0 or later with amdgpu-install with --usecase=rocm
Use either Package install or Source install as described below.
Install MIVisionX runtime, development, and test packages.
mivisionx only provides the dynamic libraries and executablesmivisionx-dev/mivisionx-devel provides the libraries, executables, header files, and samplesmivisionx-test provides ctest to verify installationsudo apt-get install mivisionx mivisionx-dev mivisionx-test
sudo yum install mivisionx mivisionx-devel mivisionx-test
sudo zypper install mivisionx mivisionx-devel mivisionx-test
[!IMPORTANT]
- Package install supports
HIPbackend- Package install requires
OpenCV V4.6manual installCentOS/RedHat/SLESrequiresFFMPEG Devpackage manual install
For your convenience, we provide the setup script, MIVisionX-setup.py, which installs all required dependencies.
python MIVisionX-setup.py --directory [setup directory - optional (default:~/)] --opencv [OpenCV Version - optional (default:4.6.0)] --ffmpeg [FFMPEG Installation - optional (default:ON) [options:ON/OFF]] --amd_rpp [MIVisionX VX RPP Dependency Install - optional (default:ON) [options:ON/OFF]] --neural_net[MIVisionX Neural Net Dependency Install - optional (default:ON) [options:ON/OFF]] --inference [MIVisionX Inference Dependency Install - optional (default:ON) [options:ON/OFF]] --developer [Setup Developer Options - optional (default:OFF) [options:ON/OFF]] --reinstall [Remove previous setup and reinstall (default:OFF)[options:ON/OFF]] --backend [MIVisionX Dependency Backend - optional (default:HIP) [options:HIP/OCL/CPU]] --rocm_path [ROCm Installation Path - optional (default:/opt/rocm ROCm Installation Required)]
[!NOTE]
- Install ROCm before running the setup script
- This script only needs to be executed once
- ROCm upgrade requires the setup script rerun
Clone MIVisionX git repository
git clone https://github.com/ROCm/MIVisionX.git
[!IMPORTANT] MIVisionX has support for two GPU backends: OPENCL and HIP
Instructions for building MIVisionX with the HIP GPU backend (default backend):
cd MIVisionX python MIVisionX-setup.py
mkdir build-hip cd build-hip cmake ../ make -j8 sudo make install
make test
Instructions for building MIVisionX with OPENCL GPU backend
OpenCV_DIR environment variable to OpenCV/build folder%OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATHMIVisionX.sln to build for x64 platform[!IMPORTANT] Some modules in MIVisionX are only supported on Linux
macOS build instructions
[!IMPORTANT] macOS only supports MIVisionX CPU backend
/opt/rocm/bin/opt/rocm/lib/opt/rocm/include/mivisionx/opt/rocm/share/mivisionx/opt/rocm/share/doc/mivisionx/opt/rocm/libexec/mivisionxCanny Edge Detection
<p align="center"><img width="60%" src="https://raw.githubusercontent.com/ROCm/MIVisionX/master/samples/images/canny_image.PNG" /></p>export PATH=$PATH:/opt/rocm/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib runvx /opt/rocm/share/mivisionx/samples/gdf/canny.gdf
[!NOTE]
- More samples are available here
- For
macOSuseexport DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/rocm/lib
Test package will install ctest module to test MIVisionX. Follow below steps to test packge install
mkdir mivisionx-test && cd mivisionx-test cmake /opt/rocm/share/mivisionx/test/ ctest -VV
MIVisionX.sln builds the libraries & executables in the folder MIVisionX/x64
Use RunVX to test the build
./runvx.exe ADD_PATH_TO/MIVisionX/samples/gdf/skintonedetect.gdf
MIVisionX provides developers with docker images for Ubuntu 20.04 / 22.04. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.
Docker files to build MIVisionX containers and suggested workflow are available
Run the steps below to build documentation locally.
cd docs pip3 install -r sphinx/requirements.txt python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
doxygen .Doxyfile
Please email mivisionx.support@amd.com for questions, and feedback on MIVisionX.
Please submit your feature requests, and bug reports on the GitHub issues page.
Review all notable changes with the latest release


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国 内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印 视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号