Mesh_Segmentation

Mesh_Segmentation

3D网格分割与特征提取技术发展概览

本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。

mesh processing特征提取分割深度学习计算机图形学Github开源项目

Mesh Processing

I hope the branch can help anyone who wants to do research about mesh processing.

Contact me: qiujie_dong(AT)mail.sdu.edu.cn, Qiujie.Jay.Dong(AT)gmail.com.

Thanks for your valuable contribution to the research.:smiley:

<h1>
- Symbols
</h1> <!--__`dat.`__: dataset &emsp; | &emsp; __`cls.`__: classification &emsp;__`seg.`__: segmentation &emsp;__`ret.`__: retrieval &emsp;-->

Statistics: :star: code is available & stars >= 100  |  :fire: citation >= 50

<h1>
- Topics
</h1>

Feature Extraction of Meshes or Mesh segmentation

2024

  • DAE-Net: Zhiqin Chen, Qimin Chen, Hang Zhou, Hao Zhang. "DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation", SIGGRAPH(2024). [paper] [code]

2023

  • BRUNO ROY. "Neural Shape Diameter Function for Efficient Mesh Segmentation", SIGGRAPH(2023). [paper]

  • MWFormer: Haoyang peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MWFormer: Mesh Understanding with Window-Based Transformer", SSRN(2023). [paper]

  • Picasso++: Huan Lei, Naveed Akhtar, Mubarak Shah, Ajmal Mian. "Mesh Convolution with Continuous Filters for 3D Surface Parsing", TNNLS(2023). [paper] [code] :star:

  • DGNet: Xiang-Li Li, Zheng-Ning Liu, Tuo Chen, Tai-Jiang Mu, Ralph R. Martin, Shi-Min Hu. "Mesh Neural Networks Based on Dual Graph Pyramids", TVCG(2023). [paper] [code]

2022

  • Laplacian2Mesh: Qiujie Dong, Zixiong Wang, Manyi Li, Junjie Gao, Shuangmin Chen, Zhenyu Shu, Shiqing Xin, Changhe Tu, Wenping Wang. "Laplacian2Mesh: Laplacian-Based Mesh Understanding", TVCG( 2023). [paper] [code]

  • MeshFormers: Hao-Yang Peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MeshFormers: Transformer-Based Networks for Mesh Understanding", SSRN(2022). [paper]

  • MeshFormer: Yuan Li, Xiangyang He, Yankai Jiang, Huan Liu, Yubo Tao, Lin Hai. "MeshFormer: High-resolution Mesh Segmentation with Graph Transformer", CGF(2022). [paper]

  • DiffusionNet: Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov. "DiffusionNet: Discretization Agnostic Learning on Surfaces", TOG( 2022). [paper] [code]

  • SubdivNet: Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, Ralph R. Martin. " Subdivision-Based Mesh Convolution Networks", TOG( 2022). [paper] [code]

  • Laplacian Mesh Transformer: Xiao-Juan Li, Jie Yang, Fang-Lue Zhan. "Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation", ECCV( 2022). [paper]

2021

  • HodgeNet: Dmitriy Smirnov, Justin Solomon. "HodgeNet: Learning Spectral Geometry on Triangle Meshes", SIGGRAPH( 2021). [paper] [code]

  • MeshNet++: Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, Chandra Kambhamettu. "MeshNet++: A Network with a Face", ACM MM(2021). [paper]

2020

  • Long Zhang, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan. "Blending Surface Segmentation and Editing for 3D Models", TVCG(2020). [paper]

  • PD-MeshNet: Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, Luca Carlone. "Primal-Dual Mesh Convolutional Neural Networks", NeurIPS(2020) . [paper] [code]

  • CurvaNet: Wenchong He, Zhe Jiang, Chengming Zhang, Arpan Man Sainju. "CurvaNet: Geometric Deep Learning based on Directional Curvature for 3D Shape Analysis", KDD(2020). [paper]

  • MeshSegNet: Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. "Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners", MICCAI( 2019) and TMI(2020) . [paper] [code]

  • MGCN: Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo, Xiaopeng Zhang, Peter Wonka. "MGCN: Descriptor Learning using Multiscale GCNs", SIGGRAPH(2020) . [project] [paper] [code]

  • MedMeshCNN: Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, Sylvia Saalfeld. "MedMeshCNN - Enabling MeshCNN for Medical Surface Models", arXiv(2020) . [paper] [code]

  • MeshWalker: Alon Lahav, Ayellet Tal. "MeshWalker: Deep Mesh Understanding by Random Walks", SIGGRAPH Asia(2020) . [paper] [code]

  • Amit Kohli, Vincent Sitzmann, Gordon Wetzstein. "Semantic Implicit Neural Scene RepresentationsWith Semi-Supervised Training", 3DV( 2020). [project] [paper] [code]

  • Zhenyu Shu, Xiaoyong Shen, Shiqing Xin, Qingjun Chang, Jieqing Feng, Ladislav Kavan, Ligang Liu. "Scribble-Based 3D Shape Segmentation via Weakly-Supervised Learning", TVCG( 2020). [paper]

2019

  • LaplacianNet: Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun Lai, Xilin Chen. "LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling", TVCG(2019). [paper]

  • VoxSegNet: Zongji Wang, Feng Lu. "VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes", TVCG( 2019). [paper] [code]

  • BAE-Net: Chen Zhiqin, Yin Kangxue, Fisher Matthew, Chaudhuri Siddhartha, Zhang Hao. "Bae-net: Branched autoencoder for shape co-segmentation", ICCV(2019) . [paper] [code]

  • MeshNet: Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, Yue Gao. "MeshNet: Mesh Neural Network for 3D Shape Representation", AAAI(2019) . [paper] [code] :star:

  • DGCNN: Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. "Dynamic Graph CNN for Learning on Point Clouds", TOG(2019) . [project] [paper] [code] :star::fire:

  • MeshCNN: Hanocka Rana, Hertz Amir, Fish Noa, Giryes Raja, Fleishman Shachar, Cohen-Or Daniel. "MeshCNN: A Network with an Edge", SIGGRAPH(2019) . [project] [paper] [code] [code from NVIDIA] :star::fire:

  • Xiaojie Xu, Chang Liu, Youyi Zheng. "3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks", TVCG(2019). [paper]

  • Zhao Wang; Li Chen. "Mesh Segmentation for High Resolution Medical Data", CISP-BMEI(2019) . [paper]

Before 2019

  • MDGCNN: ADRIEN POULENARD, MAKS OVSJANIKOV. "Multi-directional Geodesic Neural Networks via Equivariant Convolution", TOG(2018). [paper] [code] :fire:

  • George David, Xie Xianghua, Tam Gary KL. "3D mesh segmentation via multi-branch 1D convolutional neural networks", GM( 2018). [paper]

  • A Survey: Rui S. V. Rodrigues, Jos´e F. M. Morgado, Abel J. P. Gomes. "Part‐Based Mesh Segmentation: A Survey", COMPUTER GRAPHICS forum(2018). [paper]

  • Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen, Zhengxing Sun. "3D Shape Segmentation via Shape Fully Convolutional Networks", CG(2018) . [paper] [code]

  • Pointgrid: Truc Le, Ye Duan. "Pointgrid: A deep network for 3d shape understanding", CVPR(2018) . [paper] [code_PyTorch] [code_TensorFlow] :fire:

  • PointCNN: Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen. "PointCNN: Convolution On X-Transformed Points", NIPS(2018) . [paper] [code] :star::fire:

  • SyncSpecCNN: Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas. "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation", CVPR( 2017). [paper] [code] :fire:

  • DCN: Haotian Xu, Ming Dong, Zichun Zhong. "Directionally convolutional networks for 3d shape segmentation", ICCV( 2017) . [paper]

  • Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik. "Learning shape abstractions by assembling volumetric primitives", CVPR(2017) . [project] [paper] [code] :star::fire:

  • MVRNN: Le Truc, Bui Giang, Duan Ye. "A multi-view recurrent neural network for 3D mesh segmentation", Computers & Graphics(2017) . [paper] [code]

  • A Survey: Medhat Rashad, Mohamed Khamiss, Mohamed MOUSA. "A Review on Mesh Segmentation Techniques", IJEIT(2017) . [paper]

  • ShapePFCN: Evangelos Kalogerakis, Melinos Averkiou, Subhransu

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多