lora-svc

lora-svc

开源AI歌声转换系统,结合Whisper和BigVGAN的先进技术

lora-svc是一个开源的歌声转换系统,集成了OpenAI的Whisper、Nvidia的BigVGAN和Microsoft的Adapter技术。该项目利用多语言语音识别、反混叠语音生成和高效微调等技术,实现高质量的声音转换。lora-svc提供完整的数据处理、模型训练和推理流程,支持自定义训练和灵活推理,适合研究声音转换技术的开发者和研究人员使用。

Singing Voice ConversionWhisperBigVGANLoRA人工智能Github开源项目
<div align="center"> <h1> Singing Voice Conversion based on Whisper & neural source-filter BigVGAN </h1> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/PlayVoice/lora-svc"> <img alt="GitHub forks" src="https://img.shields.io/github/forks/PlayVoice/lora-svc"> <img alt="GitHub issues" src="https://img.shields.io/github/issues/PlayVoice/lora-svc"> <img alt="GitHub" src="https://img.shields.io/github/license/PlayVoice/lora-svc"> </div>
Black technology based on the three giants of artificial intelligence:

OpenAI's whisper, 680,000 hours in multiple languages

Nvidia's bigvgan, anti-aliasing for speech generation

Microsoft's adapter, high-efficiency for fine-tuning

LoRA is not fully implemented in this project, but it can be found here: LoRA TTS & paper

use pretrain model to fine tune

https://user-images.githubusercontent.com/16432329/231021007-6e34cbb4-e256-491d-8ab6-5ce4e822da21.mp4

Dataset preparation

Necessary pre-processing:

  • 1 accompaniment separation, UVR
  • 2 cut audio, less than 30 seconds for whisper, slicer

then put the dataset into the data_raw directory according to the following file structure

data_raw ├───speaker0 │ ├───000001.wav │ ├───... │ └───000xxx.wav └───speaker1 ├───000001.wav ├───... └───000xxx.wav

Install dependencies

  • 1 software dependency

    pip install -r requirements.txt

  • 2 download the Timbre Encoder: Speaker-Encoder by @mueller91, put best_model.pth.tar into speaker_pretrain/

  • 3 download whisper model multiple language medium model, Make sure to download medium.pt,put it into whisper_pretrain/

    Tip: whisper is built-in, do not install it additionally, it will conflict and report an error

  • 4 download pretrain model maxgan_pretrain_32K.pth, and do test

    python svc_inference.py --config configs/maxgan.yaml --model maxgan_pretrain_32K.pth --spk ./configs/singers/singer0001.npy --wave test.wav

Data preprocessing

use this command if you want to automate this:

python3 prepare/easyprocess.py

or step by step, as follows:

  • 1, re-sampling

    generate audio with a sampling rate of 16000Hz

    python prepare/preprocess_a.py -w ./data_raw -o ./data_svc/waves-16k -s 16000

    generate audio with a sampling rate of 32000Hz

    python prepare/preprocess_a.py -w ./data_raw -o ./data_svc/waves-32k -s 32000

  • 2, use 16K audio to extract pitch

    python prepare/preprocess_f0.py -w data_svc/waves-16k/ -p data_svc/pitch

  • 3, use 16K audio to extract ppg

    python prepare/preprocess_ppg.py -w data_svc/waves-16k/ -p data_svc/whisper

  • 4, use 16k audio to extract timbre code

    python prepare/preprocess_speaker.py data_svc/waves-16k/ data_svc/speaker

  • 5, extract the singer code for inference

    python prepare/preprocess_speaker_ave.py data_svc/speaker/ data_svc/singer

  • 6, use 32k audio to generate training index

    python prepare/preprocess_train.py

  • 7, training file debugging

    python prepare/preprocess_zzz.py -c configs/maxgan.yaml

data_svc/ └── waves-16k │ └── speaker0 │ │ ├── 000001.wav │ │ └── 000xxx.wav │ └── speaker1 │ ├── 000001.wav │ └── 000xxx.wav └── waves-32k │ └── speaker0 │ │ ├── 000001.wav │ │ └── 000xxx.wav │ └── speaker1 │ ├── 000001.wav │ └── 000xxx.wav └── pitch │ └── speaker0 │ │ ├── 000001.pit.npy │ │ └── 000xxx.pit.npy │ └── speaker1 │ ├── 000001.pit.npy │ └── 000xxx.pit.npy └── whisper │ └── speaker0 │ │ ├── 000001.ppg.npy │ │ └── 000xxx.ppg.npy │ └── speaker1 │ ├── 000001.ppg.npy │ └── 000xxx.ppg.npy └── speaker │ └── speaker0 │ │ ├── 000001.spk.npy │ │ └── 000xxx.spk.npy │ └── speaker1 │ ├── 000001.spk.npy │ └── 000xxx.spk.npy └── singer ├── speaker0.spk.npy └── speaker1.spk.npy

Train

  • 0, if fine-tuning based on the pre-trained model, you need to download the pre-trained model: maxgan_pretrain_32K.pth

    set pretrain: "./maxgan_pretrain_32K.pth" in configs/maxgan.yaml,and adjust the learning rate appropriately, eg 1e-5

  • 1, start training

    python svc_trainer.py -c configs/maxgan.yaml -n svc

  • 2, resume training

    python svc_trainer.py -c configs/maxgan.yaml -n svc -p chkpt/svc/***.pth

  • 3, view log

    tensorboard --logdir logs/

final_model_loss

Inference

use this command if you want a GUI that does all the commands below:

python3 svc_gui.py

or step by step, as follows:

  • 1, export inference model

    python svc_export.py --config configs/maxgan.yaml --checkpoint_path chkpt/svc/***.pt

  • 2, use whisper to extract content encoding, without using one-click reasoning, in order to reduce GPU memory usage

    python whisper/inference.py -w test.wav -p test.ppg.npy

  • 3, extract the F0 parameter to the csv text format

    python pitch/inference.py -w test.wav -p test.csv

  • 4, specify parameters and infer

    python svc_inference.py --config configs/maxgan.yaml --model maxgan_g.pth --spk ./data_svc/singers/your_singer.npy --wave test.wav --ppg test.ppg.npy --pit test.csv

    when --ppg is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted;

    when --pit is specified, the manually tuned F0 parameter can be loaded; if not specified, it will be automatically extracted;

    generate files in the current directory:svc_out.wav

    args--config--model--spk--wave--ppg--pit--shift
    nameconfig pathmodel pathspeakerwave inputwave ppgwave pitchpitch shift
  • 5, post by vad

    python svc_inference_post.py --ref test.wav --svc svc_out.wav --out svc_post.wav

Source of code and References

Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

AdaSpeech: Adaptive Text to Speech for Custom Voice

https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf

https://github.com/mindslab-ai/univnet [paper]

https://github.com/openai/whisper/ [paper]

https://github.com/NVIDIA/BigVGAN [paper]

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多