A curated list of papers and resources about large language models (LLMs) on graphs based on our survey paper: Large Language Models on Graphs: A Comprehensive Survey.
This repo will be continuously updated. Don't forget to star <img src="./fig/star.svg" width="15" height="15" /> it and keep tuned!
Please cite the paper in Citations if you find the resource helpful for your research. Thanks!
<p align="center"> <img src="./fig/intro.svg" width="90%" style="align:center;"/> </p>Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are captioned with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a comprehensive review of scenarios and techniques related to large language models on graphs.
The Transformer architecture used in the work, e.g., EncoderOnly, DecoderOnly, EncoderDecoder.
The size of the large language model, e.g., medium (i.e., less than 1B parameters), LLM (i.e., more than 1B parameters).
Unifying Large Language Models and Knowledge Graphs: A Roadmap. preprint
Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu [PDF], 2023.6
Integrating Graphs with Large Language Models: Methods and Prospects preprint
Shirui Pan, Yizhen Zheng, Yixin Liu [PDF], 2023.10
Towards graph foundation models: A survey and beyond. preprint
Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. [PDF], 2023.10
A Survey of Graph Meets Large Language Model: Progress and Future Directions. preprint
Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey Xu Yu. [PDF], 2023.11
Table 3 in our survey paper Large Language Models on Graphs: A Comprehensive Survey.
<p align="center"> <img src="./fig/puregraph-data.jpg" width="90%" style="align:center;"/> </p>Can Language Models Solve Graph Problems in Natural Language? preprint
Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov. [PDF] [Code], 2023.5,
GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. preprint
Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, Shi Han. [PDF], 2023.5,
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis. preprint
Talk Like A Graph: Encoding Graphs For Large Language Models. preprint
Bahare Fatemi, Jonathan Halcrow, Bryan Perozzi. [PDF], 2023.10,
GraphLLM: Boosting Graph Reasoning Ability of Large Language Model. preprint
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, Yang Yang. [PDF] [Code], 2023.10,
LLM4DyG: Can Large Language Models Solve Problems on Dynamic Graphs?. preprint
Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, Wenwu Zhu [PDF] [Code], 2023.10,
Which Modality should I use - Text, Motif, or Image? : Understanding Graphs with Large Language Models. preprint
Debarati Das, Ishaan Gupta, Jaideep Srivastava, Dongyeop Kang [PDF] [Code], 2023.11,
GraphArena: Benchmarking Large Language Models on Graph Computational Problems. preprint
Jianheng Tang, Qifan Zhang, Yuhan Li, Jia Li [PDF] [Code], 2024.7,
StructGPT: A General Framework for Large Language Model to Reason over Structured Data. preprint
Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, Ji-Rong Wen. [PDF] [Code], 2023.5,
Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. preprint
Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-Yeung Shum, Jian Guo. [PDF] [Code], 2023.7,
Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. preprint
Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, Enhong Chen. [PDF] [Code], 2023.7,
Knowledge Graph Prompting for Multi-Document Question Answering. AAAI2024
Yu Wang, Nedim Lipka, Ryan Rossi, Alex Siu, Ruiyi Zhang, Tyler Derr. [PDF] [Code], 2023.8,
ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. preprint
Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.9,
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. preprint
Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.10,
Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models. preprint
Junchi Yu, Ran He, Rex Ying. [PDF], 2023.10,
Large Language Models Can Learn Temporal Reasoning. preprint
Siheng Xiong, Ali Payani, Ramana Kompella, Faramarz Fekri. [PDF], 2024.1,
Exploring the Limitations of Graph Reasoning in Large Language Models. preprint
Palaash Agrawal, Shavak Vasania, Cheston Tan. [PDF], 2024.2,
Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. preprint
Yanbin Wei, Shuai Fu, Weisen Jiang, James T. Kwok, Yu Zhang. [PDF], 2024.2,
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning. preprint
Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, Janet B. Pierrehumbert. [PDF], 2024.2,
Microstructures and Accuracy of Graph Recall by Large Language Models. preprint
Yanbang Wang, Hejie Cui, Jon Kleinberg. [PDF], 2024.2,
Structure Guided Prompt: Instructing Large Language Model in Multi-Step Reasoning by Exploring Graph Structure of the Text. preprint
Kewei Cheng, Nesreen K. Ahmed, Theodore Willke, Yizhou Sun. [PDF], 2024.2,
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability. preprint
Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin. [PDF], 2024.3,
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. preprint
Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang. [PDF], 2024.3,
**Exploring the
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档 。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号