A curated list of papers and resources about large language models (LLMs) on graphs based on our survey paper: Large Language Models on Graphs: A Comprehensive Survey.
This repo will be continuously updated. Don't forget to star <img src="./fig/star.svg" width="15" height="15" /> it and keep tuned!
Please cite the paper in Citations if you find the resource helpful for your research. Thanks!
<p align="center"> <img src="./fig/intro.svg" width="90%" style="align:center;"/> </p>Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are captioned with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a comprehensive review of scenarios and techniques related to large language models on graphs.
The Transformer architecture used in the work, e.g., EncoderOnly, DecoderOnly, EncoderDecoder.
The size of the large language model, e.g., medium (i.e., less than 1B parameters), LLM (i.e., more than 1B parameters).
Unifying Large Language Models and Knowledge Graphs: A Roadmap. preprint
Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu [PDF], 2023.6
Integrating Graphs with Large Language Models: Methods and Prospects preprint
Shirui Pan, Yizhen Zheng, Yixin Liu [PDF], 2023.10
Towards graph foundation models: A survey and beyond. preprint
Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. [PDF], 2023.10
A Survey of Graph Meets Large Language Model: Progress and Future Directions. preprint
Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey Xu Yu. [PDF], 2023.11
Table 3 in our survey paper Large Language Models on Graphs: A Comprehensive Survey.
<p align="center"> <img src="./fig/puregraph-data.jpg" width="90%" style="align:center;"/> </p>Can Language Models Solve Graph Problems in Natural Language? preprint
Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov. [PDF] [Code], 2023.5,
GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. preprint
Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, Shi Han. [PDF], 2023.5,
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis. preprint
Talk Like A Graph: Encoding Graphs For Large Language Models. preprint
Bahare Fatemi, Jonathan Halcrow, Bryan Perozzi. [PDF], 2023.10,
GraphLLM: Boosting Graph Reasoning Ability of Large Language Model. preprint
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, Yang Yang. [PDF] [Code], 2023.10,
LLM4DyG: Can Large Language Models Solve Problems on Dynamic Graphs?. preprint
Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, Wenwu Zhu [PDF] [Code], 2023.10,
Which Modality should I use - Text, Motif, or Image? : Understanding Graphs with Large Language Models. preprint
Debarati Das, Ishaan Gupta, Jaideep Srivastava, Dongyeop Kang [PDF] [Code], 2023.11,
GraphArena: Benchmarking Large Language Models on Graph Computational Problems. preprint
Jianheng Tang, Qifan Zhang, Yuhan Li, Jia Li [PDF] [Code], 2024.7,
StructGPT: A General Framework for Large Language Model to Reason over Structured Data. preprint
Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, Ji-Rong Wen. [PDF] [Code], 2023.5,
Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. preprint
Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-Yeung Shum, Jian Guo. [PDF] [Code], 2023.7,
Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. preprint
Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, Enhong Chen. [PDF] [Code], 2023.7,
Knowledge Graph Prompting for Multi-Document Question Answering. AAAI2024
Yu Wang, Nedim Lipka, Ryan Rossi, Alex Siu, Ruiyi Zhang, Tyler Derr. [PDF] [Code], 2023.8,
ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. preprint
Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.9,
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. preprint
Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.10,
Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models. preprint
Junchi Yu, Ran He, Rex Ying. [PDF], 2023.10,
Large Language Models Can Learn Temporal Reasoning. preprint
Siheng Xiong, Ali Payani, Ramana Kompella, Faramarz Fekri. [PDF], 2024.1,
Exploring the Limitations of Graph Reasoning in Large Language Models. preprint
Palaash Agrawal, Shavak Vasania, Cheston Tan. [PDF], 2024.2,
Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. preprint
Yanbin Wei, Shuai Fu, Weisen Jiang, James T. Kwok, Yu Zhang. [PDF], 2024.2,
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning. preprint
Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, Janet B. Pierrehumbert. [PDF], 2024.2,
Microstructures and Accuracy of Graph Recall by Large Language Models. preprint
Yanbang Wang, Hejie Cui, Jon Kleinberg. [PDF], 2024.2,
Structure Guided Prompt: Instructing Large Language Model in Multi-Step Reasoning by Exploring Graph Structure of the Text. preprint
Kewei Cheng, Nesreen K. Ahmed, Theodore Willke, Yizhou Sun. [PDF], 2024.2,
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability. preprint
Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin. [PDF], 2024.3,
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. preprint
Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang. [PDF], 2024.3,
**Exploring the


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最 好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号