A curated list of papers and resources about large language models (LLMs) on graphs based on our survey paper: Large Language Models on Graphs: A Comprehensive Survey.
This repo will be continuously updated. Don't forget to star <img src="./fig/star.svg" width="15" height="15" /> it and keep tuned!
Please cite the paper in Citations if you find the resource helpful for your research. Thanks!
<p align="center"> <img src="./fig/intro.svg" width="90%" style="align:center;"/> </p>Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are captioned with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a comprehensive review of scenarios and techniques related to large language models on graphs.
The Transformer architecture used in the work, e.g., EncoderOnly, DecoderOnly, EncoderDecoder.
The size of the large language model, e.g., medium (i.e., less than 1B parameters), LLM (i.e., more than 1B parameters).
Unifying Large Language Models and Knowledge Graphs: A Roadmap. preprint
Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu [PDF], 2023.6
Integrating Graphs with Large Language Models: Methods and Prospects preprint
Shirui Pan, Yizhen Zheng, Yixin Liu [PDF], 2023.10
Towards graph foundation models: A survey and beyond. preprint
Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. [PDF], 2023.10
A Survey of Graph Meets Large Language Model: Progress and Future Directions. preprint
Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey Xu Yu. [PDF], 2023.11
Table 3 in our survey paper Large Language Models on Graphs: A Comprehensive Survey.
<p align="center"> <img src="./fig/puregraph-data.jpg" width="90%" style="align:center;"/> </p>Can Language Models Solve Graph Problems in Natural Language? preprint
Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov. [PDF] [Code], 2023.5,
GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. preprint
Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, Shi Han. [PDF], 2023.5,
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis. preprint
Talk Like A Graph: Encoding Graphs For Large Language Models. preprint
Bahare Fatemi, Jonathan Halcrow, Bryan Perozzi. [PDF], 2023.10,
GraphLLM: Boosting Graph Reasoning Ability of Large Language Model. preprint
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, Yang Yang. [PDF] [Code], 2023.10,
LLM4DyG: Can Large Language Models Solve Problems on Dynamic Graphs?. preprint
Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, Wenwu Zhu [PDF] [Code], 2023.10,
Which Modality should I use - Text, Motif, or Image? : Understanding Graphs with Large Language Models. preprint
Debarati Das, Ishaan Gupta, Jaideep Srivastava, Dongyeop Kang [PDF] [Code], 2023.11,
GraphArena: Benchmarking Large Language Models on Graph Computational Problems. preprint
Jianheng Tang, Qifan Zhang, Yuhan Li, Jia Li [PDF] [Code], 2024.7,
StructGPT: A General Framework for Large Language Model to Reason over Structured Data. preprint
Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, Ji-Rong Wen. [PDF] [Code], 2023.5,
Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. preprint
Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-Yeung Shum, Jian Guo. [PDF] [Code], 2023.7,
Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. preprint
Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, Enhong Chen. [PDF] [Code], 2023.7,
Knowledge Graph Prompting for Multi-Document Question Answering. AAAI2024
Yu Wang, Nedim Lipka, Ryan Rossi, Alex Siu, Ruiyi Zhang, Tyler Derr. [PDF] [Code], 2023.8,
ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. preprint
Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.9,
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. preprint
Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.10,
Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models. preprint
Junchi Yu, Ran He, Rex Ying. [PDF], 2023.10,
Large Language Models Can Learn Temporal Reasoning. preprint
Siheng Xiong, Ali Payani, Ramana Kompella, Faramarz Fekri. [PDF], 2024.1,
Exploring the Limitations of Graph Reasoning in Large Language Models. preprint
Palaash Agrawal, Shavak Vasania, Cheston Tan. [PDF], 2024.2,
Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. preprint
Yanbin Wei, Shuai Fu, Weisen Jiang, James T. Kwok, Yu Zhang. [PDF], 2024.2,
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning. preprint
Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, Janet B. Pierrehumbert. [PDF], 2024.2,
Microstructures and Accuracy of Graph Recall by Large Language Models. preprint
Yanbang Wang, Hejie Cui, Jon Kleinberg. [PDF], 2024.2,
Structure Guided Prompt: Instructing Large Language Model in Multi-Step Reasoning by Exploring Graph Structure of the Text. preprint
Kewei Cheng, Nesreen K. Ahmed, Theodore Willke, Yizhou Sun. [PDF], 2024.2,
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability. preprint
Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin. [PDF], 2024.3,
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. preprint
Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang. [PDF], 2024.3,
**Exploring the
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号