LLM-Agent-Survey

LLM-Agent-Survey

大语言模型驱动智能体的构建应用与评估综述

该研究全面综述了基于大语言模型(LLM)的自主智能体,探讨了智能体的核心组件和应用领域。作为该领域首个发表的综述论文,研究分析了LLM智能体在多个学科的应用,并讨论了评估策略,为该快速发展领域的研究人员提供了宝贵见解。

LLM自主代理人工智能大语言模型机器学习Github开源项目

A Survey on LLM-based Autonomous Agents

Growth Trend

Autonomous agents are designed to achieve specific objectives through self-guided instructions. With the emergence and growth of large language models (LLMs), there is a growing trend in utilizing LLMs as fundamental controllers for these autonomous agents. While previous studies in this field have achieved remarkable successes, they remain independent proposals with little effort devoted to a systematic analysis. To bridge this gap, we conduct a comprehensive survey study, focusing on the construction, application, and evaluation of LLM-based autonomous agents. In particular, we first explore the essential components of an AI agent, including a profile module, a memory module, a planning module, and an action module. We further investigate the application of LLM-based autonomous agents in the domains of natural sciences, social sciences, and engineering. Subsequently, we delve into a discussion of the evaluation strategies employed in this field, encompassing both subjective and objective methods. Our survey aims to serve as a resource for researchers and practitioners, providing insights, related references, and continuous updates on this exciting and rapidly evolving field.

📍 This is the first released and published survey paper in the field of LLM-based autonomous agents.

Paper link: A Survey on Large Language Model based Autonomous Agents

Update Records

  • 🔥 [25/3/2024] Our survey paper has been accepted by Frontiers of Computer Science, which is the first published survey paper in the field of LLM-based agents.

  • 🔥 [9/28/2023] We have compiled and summarized papers related to LLM-based Agents that have been accepted by Neurips 2023 in the repository LLM-Agent-Paper-Digest. This repository will continue to be updated with accepted agent-related papers in the future.

  • 🔥 [9/8/2023] The second version of our survey has been released on arXiv.

    <details> <summary>Updated contents</summary>
    • 📚 Additional References

      • We have added 31 new works until 9/1/2023 to make the survey more comprehensive and up-to-date.
    • 📊 New Figures

      • Figure 3: This is a new figure illustrating the differences and similarities between various planning approaches. This helps in gaining a clearer understanding of the comparisons between different planning methods. single-path and multi-path reasoning
      • Figure 4: This is a new figure that describes the evolutionary path of model capability acquisition from the "Machine Learning era" to the "Large Language Model era" and then to the "Agent era." Specifically, a new concept, "mechanism engineering," has been introduced, which, along with "parameter learning" and "prompt engineering," forms part of this evolutionary path. Capabilities Acquisition
    • 🔍 Optimized Classification System

      • We have slightly modified the classification system in our survey to make it more logical and organized.
    </details>
  • 🔥 [8/23/2023] The first version of our survey has been released on arXiv.<br>

<!--omit in the toc-->

Table of Content

<!-- - [Growth Trend in the Field of LLM-based Autonomous Agent](#-growth-trend-of-llm-based-autonomous-agent)--> <!-- ## 📚 Growth Trend in the Field of LLM-based Autonomous Agent ![Growth Trend](assets/trend.png) <hr> --> <!-- ## 📋 Structure of the Survey ![Structure](assets/survey.png) <hr> -->

🤖 Construction of LLM-based Autonomous Agent

Architecture Design

<table> <tr> <td rowspan='2'align='center'>Model</td> <td rowspan='2'align='center'>Profile</td> <td colspan='2'align='center'>Memory</td> <td rowspan='2'align='center'>Planning</td> <td rowspan='2'align='center'>Action</td> <td rowspan='2'align='center'>CA</td> <td rowspan='2'align='center'>Paper</td> <td rowspan='2'align='center'>Code</td> </tr> <tr> <td align='center'>Operation</td> <td align='center'>Structure</td> </tr> <tr> <td align='center'>WebGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2112.09332">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>SayCan</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2204.01691">Paper</a></td> <td align='center'><a href="https://say-can.github.io/">Code</a></td> </tr> <tr> <td align='center'>MRKL</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2205.00445">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>Inner Monologue</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2207.05608">Paper</a></td> <td align='center'><a href="https://innermonologue.github.io/">Code</a></td> </tr> <tr> <td align='center'>Social Simulacra</td> <td align='center'>GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2208.04024">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>ReAct</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2210.03629">Paper</a></td> <td align='center'><a href="https://github.com/ysymyth/ReAct">Code</a></td> </tr> <tr> <td align='center'>LLM Planner</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>Environment feedback</td> <td align='center'><a href="https://arxiv.org/abs/2212.04088">Paper</a></td> <td align='center'><a href="https://dki-lab.github.io/LLM-Planner">Code</a></td> </tr> <tr> <td align='center'>MALLM</td> <td align='center'>-</td> <td align='center'>Read/Write</td> <td align='center'>Hybrid</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2301.04589">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>aiflows</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2308.01285">Paper</a></td> <td align='center'><a href="https://github.com/epfl-dlab/aiflows">Code</a></td> </tr> <tr> <td align='center'>DEPS</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.01560">Paper</a></td> <td align='center'><a href="https://github.com/CraftJarvis/MC-Planner">Code</a></td> </tr> <tr> <td align='center'>Toolformer</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.04761">Paper</a></td> <td align='center'><a href="https://github.com/lucidrains/toolformer-pytorch">Code</a></td> </tr> <tr> <td align='center'>Reflexion</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2303.11366">Paper</a></td> <td align='center'><a href="https://github.com/noahshinn024/reflexion">Code</a></td> </tr> <tr> <td align='center'>CAMEL</td> <td align='center'>Handcrafting & GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17760">Paper</a></td> <td align='center'><a href="https://github.com/camel-ai/camel">Code</a></td> </tr> <tr> <td align='center'>API-Bank</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2304.08244">Paper</a></td> <td align='center'><a href="url">-</a></td> </tr> </tr> <tr> <td align='center'>Chameleon</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.09842">Paper</a></td> <td align='center'><a href="https://chameleon-llm.github.io/">Code</a></td> </tr> <tr> <td align='center'>ViperGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.08128">Paper</a></td> <td align='center'><a href="https://github.com/cvlab-columbia/viper">Code</a></td> </tr> <tr> <td align='center'>HuggingGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>Unified</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17580">Paper</a></td> <td align='center'><a href="https://huggingface.co/">Code</a></td> </tr> <tr> <td align='center'>Generative Agents</td> <td align='center'>Handcrafting</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.03442">Paper</a></td> <td align='center'><a href="https://github.com/joonspk-research/generative_agents">Code</a></td> </tr> <tr> <td align='center'>LLM+P</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多