LLM-Agent-Survey

LLM-Agent-Survey

大语言模型驱动智能体的构建应用与评估综述

该研究全面综述了基于大语言模型(LLM)的自主智能体,探讨了智能体的核心组件和应用领域。作为该领域首个发表的综述论文,研究分析了LLM智能体在多个学科的应用,并讨论了评估策略,为该快速发展领域的研究人员提供了宝贵见解。

LLM自主代理人工智能大语言模型机器学习Github开源项目

A Survey on LLM-based Autonomous Agents

Growth Trend

Autonomous agents are designed to achieve specific objectives through self-guided instructions. With the emergence and growth of large language models (LLMs), there is a growing trend in utilizing LLMs as fundamental controllers for these autonomous agents. While previous studies in this field have achieved remarkable successes, they remain independent proposals with little effort devoted to a systematic analysis. To bridge this gap, we conduct a comprehensive survey study, focusing on the construction, application, and evaluation of LLM-based autonomous agents. In particular, we first explore the essential components of an AI agent, including a profile module, a memory module, a planning module, and an action module. We further investigate the application of LLM-based autonomous agents in the domains of natural sciences, social sciences, and engineering. Subsequently, we delve into a discussion of the evaluation strategies employed in this field, encompassing both subjective and objective methods. Our survey aims to serve as a resource for researchers and practitioners, providing insights, related references, and continuous updates on this exciting and rapidly evolving field.

📍 This is the first released and published survey paper in the field of LLM-based autonomous agents.

Paper link: A Survey on Large Language Model based Autonomous Agents

Update Records

  • 🔥 [25/3/2024] Our survey paper has been accepted by Frontiers of Computer Science, which is the first published survey paper in the field of LLM-based agents.

  • 🔥 [9/28/2023] We have compiled and summarized papers related to LLM-based Agents that have been accepted by Neurips 2023 in the repository LLM-Agent-Paper-Digest. This repository will continue to be updated with accepted agent-related papers in the future.

  • 🔥 [9/8/2023] The second version of our survey has been released on arXiv.

    <details> <summary>Updated contents</summary>
    • 📚 Additional References

      • We have added 31 new works until 9/1/2023 to make the survey more comprehensive and up-to-date.
    • 📊 New Figures

      • Figure 3: This is a new figure illustrating the differences and similarities between various planning approaches. This helps in gaining a clearer understanding of the comparisons between different planning methods. single-path and multi-path reasoning
      • Figure 4: This is a new figure that describes the evolutionary path of model capability acquisition from the "Machine Learning era" to the "Large Language Model era" and then to the "Agent era." Specifically, a new concept, "mechanism engineering," has been introduced, which, along with "parameter learning" and "prompt engineering," forms part of this evolutionary path. Capabilities Acquisition
    • 🔍 Optimized Classification System

      • We have slightly modified the classification system in our survey to make it more logical and organized.
    </details>
  • 🔥 [8/23/2023] The first version of our survey has been released on arXiv.<br>

<!--omit in the toc-->

Table of Content

<!-- - [Growth Trend in the Field of LLM-based Autonomous Agent](#-growth-trend-of-llm-based-autonomous-agent)--> <!-- ## 📚 Growth Trend in the Field of LLM-based Autonomous Agent ![Growth Trend](assets/trend.png) <hr> --> <!-- ## 📋 Structure of the Survey ![Structure](assets/survey.png) <hr> -->

🤖 Construction of LLM-based Autonomous Agent

Architecture Design

<table> <tr> <td rowspan='2'align='center'>Model</td> <td rowspan='2'align='center'>Profile</td> <td colspan='2'align='center'>Memory</td> <td rowspan='2'align='center'>Planning</td> <td rowspan='2'align='center'>Action</td> <td rowspan='2'align='center'>CA</td> <td rowspan='2'align='center'>Paper</td> <td rowspan='2'align='center'>Code</td> </tr> <tr> <td align='center'>Operation</td> <td align='center'>Structure</td> </tr> <tr> <td align='center'>WebGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2112.09332">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>SayCan</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2204.01691">Paper</a></td> <td align='center'><a href="https://say-can.github.io/">Code</a></td> </tr> <tr> <td align='center'>MRKL</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2205.00445">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>Inner Monologue</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2207.05608">Paper</a></td> <td align='center'><a href="https://innermonologue.github.io/">Code</a></td> </tr> <tr> <td align='center'>Social Simulacra</td> <td align='center'>GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2208.04024">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>ReAct</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2210.03629">Paper</a></td> <td align='center'><a href="https://github.com/ysymyth/ReAct">Code</a></td> </tr> <tr> <td align='center'>LLM Planner</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>Environment feedback</td> <td align='center'><a href="https://arxiv.org/abs/2212.04088">Paper</a></td> <td align='center'><a href="https://dki-lab.github.io/LLM-Planner">Code</a></td> </tr> <tr> <td align='center'>MALLM</td> <td align='center'>-</td> <td align='center'>Read/Write</td> <td align='center'>Hybrid</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2301.04589">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>aiflows</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2308.01285">Paper</a></td> <td align='center'><a href="https://github.com/epfl-dlab/aiflows">Code</a></td> </tr> <tr> <td align='center'>DEPS</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.01560">Paper</a></td> <td align='center'><a href="https://github.com/CraftJarvis/MC-Planner">Code</a></td> </tr> <tr> <td align='center'>Toolformer</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.04761">Paper</a></td> <td align='center'><a href="https://github.com/lucidrains/toolformer-pytorch">Code</a></td> </tr> <tr> <td align='center'>Reflexion</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2303.11366">Paper</a></td> <td align='center'><a href="https://github.com/noahshinn024/reflexion">Code</a></td> </tr> <tr> <td align='center'>CAMEL</td> <td align='center'>Handcrafting & GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17760">Paper</a></td> <td align='center'><a href="https://github.com/camel-ai/camel">Code</a></td> </tr> <tr> <td align='center'>API-Bank</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2304.08244">Paper</a></td> <td align='center'><a href="url">-</a></td> </tr> </tr> <tr> <td align='center'>Chameleon</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.09842">Paper</a></td> <td align='center'><a href="https://chameleon-llm.github.io/">Code</a></td> </tr> <tr> <td align='center'>ViperGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.08128">Paper</a></td> <td align='center'><a href="https://github.com/cvlab-columbia/viper">Code</a></td> </tr> <tr> <td align='center'>HuggingGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>Unified</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17580">Paper</a></td> <td align='center'><a href="https://huggingface.co/">Code</a></td> </tr> <tr> <td align='center'>Generative Agents</td> <td align='center'>Handcrafting</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.03442">Paper</a></td> <td align='center'><a href="https://github.com/joonspk-research/generative_agents">Code</a></td> </tr> <tr> <td align='center'>LLM+P</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多