LLM-Agent-Survey

LLM-Agent-Survey

大语言模型驱动智能体的构建应用与评估综述

该研究全面综述了基于大语言模型(LLM)的自主智能体,探讨了智能体的核心组件和应用领域。作为该领域首个发表的综述论文,研究分析了LLM智能体在多个学科的应用,并讨论了评估策略,为该快速发展领域的研究人员提供了宝贵见解。

LLM自主代理人工智能大语言模型机器学习Github开源项目

A Survey on LLM-based Autonomous Agents

Growth Trend

Autonomous agents are designed to achieve specific objectives through self-guided instructions. With the emergence and growth of large language models (LLMs), there is a growing trend in utilizing LLMs as fundamental controllers for these autonomous agents. While previous studies in this field have achieved remarkable successes, they remain independent proposals with little effort devoted to a systematic analysis. To bridge this gap, we conduct a comprehensive survey study, focusing on the construction, application, and evaluation of LLM-based autonomous agents. In particular, we first explore the essential components of an AI agent, including a profile module, a memory module, a planning module, and an action module. We further investigate the application of LLM-based autonomous agents in the domains of natural sciences, social sciences, and engineering. Subsequently, we delve into a discussion of the evaluation strategies employed in this field, encompassing both subjective and objective methods. Our survey aims to serve as a resource for researchers and practitioners, providing insights, related references, and continuous updates on this exciting and rapidly evolving field.

📍 This is the first released and published survey paper in the field of LLM-based autonomous agents.

Paper link: A Survey on Large Language Model based Autonomous Agents

Update Records

  • 🔥 [25/3/2024] Our survey paper has been accepted by Frontiers of Computer Science, which is the first published survey paper in the field of LLM-based agents.

  • 🔥 [9/28/2023] We have compiled and summarized papers related to LLM-based Agents that have been accepted by Neurips 2023 in the repository LLM-Agent-Paper-Digest. This repository will continue to be updated with accepted agent-related papers in the future.

  • 🔥 [9/8/2023] The second version of our survey has been released on arXiv.

    <details> <summary>Updated contents</summary>
    • 📚 Additional References

      • We have added 31 new works until 9/1/2023 to make the survey more comprehensive and up-to-date.
    • 📊 New Figures

      • Figure 3: This is a new figure illustrating the differences and similarities between various planning approaches. This helps in gaining a clearer understanding of the comparisons between different planning methods. single-path and multi-path reasoning
      • Figure 4: This is a new figure that describes the evolutionary path of model capability acquisition from the "Machine Learning era" to the "Large Language Model era" and then to the "Agent era." Specifically, a new concept, "mechanism engineering," has been introduced, which, along with "parameter learning" and "prompt engineering," forms part of this evolutionary path. Capabilities Acquisition
    • 🔍 Optimized Classification System

      • We have slightly modified the classification system in our survey to make it more logical and organized.
    </details>
  • 🔥 [8/23/2023] The first version of our survey has been released on arXiv.<br>

<!--omit in the toc-->

Table of Content

<!-- - [Growth Trend in the Field of LLM-based Autonomous Agent](#-growth-trend-of-llm-based-autonomous-agent)--> <!-- ## 📚 Growth Trend in the Field of LLM-based Autonomous Agent ![Growth Trend](assets/trend.png) <hr> --> <!-- ## 📋 Structure of the Survey ![Structure](assets/survey.png) <hr> -->

🤖 Construction of LLM-based Autonomous Agent

Architecture Design

<table> <tr> <td rowspan='2'align='center'>Model</td> <td rowspan='2'align='center'>Profile</td> <td colspan='2'align='center'>Memory</td> <td rowspan='2'align='center'>Planning</td> <td rowspan='2'align='center'>Action</td> <td rowspan='2'align='center'>CA</td> <td rowspan='2'align='center'>Paper</td> <td rowspan='2'align='center'>Code</td> </tr> <tr> <td align='center'>Operation</td> <td align='center'>Structure</td> </tr> <tr> <td align='center'>WebGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2112.09332">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>SayCan</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2204.01691">Paper</a></td> <td align='center'><a href="https://say-can.github.io/">Code</a></td> </tr> <tr> <td align='center'>MRKL</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2205.00445">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>Inner Monologue</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2207.05608">Paper</a></td> <td align='center'><a href="https://innermonologue.github.io/">Code</a></td> </tr> <tr> <td align='center'>Social Simulacra</td> <td align='center'>GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2208.04024">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>ReAct</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2210.03629">Paper</a></td> <td align='center'><a href="https://github.com/ysymyth/ReAct">Code</a></td> </tr> <tr> <td align='center'>LLM Planner</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>Environment feedback</td> <td align='center'><a href="https://arxiv.org/abs/2212.04088">Paper</a></td> <td align='center'><a href="https://dki-lab.github.io/LLM-Planner">Code</a></td> </tr> <tr> <td align='center'>MALLM</td> <td align='center'>-</td> <td align='center'>Read/Write</td> <td align='center'>Hybrid</td> <td align='center'>-</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2301.04589">Paper</a></td> <td align='center'>-</td> </tr> <tr> <td align='center'>aiflows</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2308.01285">Paper</a></td> <td align='center'><a href="https://github.com/epfl-dlab/aiflows">Code</a></td> </tr> <tr> <td align='center'>DEPS</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.01560">Paper</a></td> <td align='center'><a href="https://github.com/CraftJarvis/MC-Planner">Code</a></td> </tr> <tr> <td align='center'>Toolformer</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/ fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2302.04761">Paper</a></td> <td align='center'><a href="https://github.com/lucidrains/toolformer-pytorch">Code</a></td> </tr> <tr> <td align='center'>Reflexion</td> <td align='center'>-</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2303.11366">Paper</a></td> <td align='center'><a href="https://github.com/noahshinn024/reflexion">Code</a></td> </tr> <tr> <td align='center'>CAMEL</td> <td align='center'>Handcrafting & GPT-Generated</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17760">Paper</a></td> <td align='center'><a href="https://github.com/camel-ai/camel">Code</a></td> </tr> <tr> <td align='center'>API-Bank</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ feedback</td> <td align='center'>w/ tools</td> <td align='center'>w/o fine-tuning</td> <td align='center'><a href="https://arxiv.org/abs/2304.08244">Paper</a></td> <td align='center'><a href="url">-</a></td> </tr> </tr> <tr> <td align='center'>Chameleon</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.09842">Paper</a></td> <td align='center'><a href="https://chameleon-llm.github.io/">Code</a></td> </tr> <tr> <td align='center'>ViperGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.08128">Paper</a></td> <td align='center'><a href="https://github.com/cvlab-columbia/viper">Code</a></td> </tr> <tr> <td align='center'>HuggingGPT</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>Unified</td> <td align='center'>w/o feedback</td> <td align='center'>w/ tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2303.17580">Paper</a></td> <td align='center'><a href="https://huggingface.co/">Code</a></td> </tr> <tr> <td align='center'>Generative Agents</td> <td align='center'>Handcrafting</td> <td align='center'>Read/Write/<br>Reflection</td> <td align='center'>Hybrid</td> <td align='center'>w/ feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a href="https://arxiv.org/abs/2304.03442">Paper</a></td> <td align='center'><a href="https://github.com/joonspk-research/generative_agents">Code</a></td> </tr> <tr> <td align='center'>LLM+P</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>-</td> <td align='center'>w/o feedback</td> <td align='center'>w/o tools</td> <td align='center'>-</td> <td align='center'><a

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多