DexterousHands

DexterousHands

双臂灵巧操作强化学习框架

Bi-DexHands是基于Isaac Gym的双手灵巧操作任务集和强化学习算法框架。它提供高效模拟环境,支持多种强化学习方法,包含丰富双手操作任务。单GPU可达40,000+FPS,为研究手部灵巧性和双手协调提供工具。

Bi-DexHands双手操作强化学习Isaac Gym机器人控制Github开源项目

Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning

<img src="assets/image_folder/coverv3.jpg" width="1000" border="1"/>

PyPI Organization Unittest Docs GitHub license

Update

[2023/02/09] We re-package the Bi-DexHands. Now you can call the Bi-DexHands' environments not only on the command line, but also in your Python script. check our README Use Bi-DexHands in Python scripts below.

[2022/11/24] Now we support visual observation for all the tasks, check this document for visual input.

[2022/10/02] Now we support for the default IsaacGymEnvs RL library rl-games, check our README below.

Bi-DexHands (click bi-dexhands.ai) provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms. Reaching human-level sophistication of hand dexterity and bimanual coordination remains an open challenge for modern robotics researchers. To better help the community study this problem, Bi-DexHands are developed with the following key features:

  • Isaac Efficiency: Bi-DexHands is built within Isaac Gym; it supports running thousands of environments simultaneously. For example, on one NVIDIA RTX 3090 GPU, Bi-DexHands can reach 40,000+ mean FPS by running 2,048 environments in parallel.
  • Comprehensive RL Benchmark: we provide the first bimanual manipulation task environment for RL, MARL, Multi-task RL, Meta RL, and Offline RL practitioners, along with a comprehensive benchmark for SOTA continuous control model-free RL/MARL methods. See example
  • Heterogeneous-agents Cooperation: Agents in Bi-DexHands (i.e., joints, fingers, hands,...) are genuinely heterogeneous; this is very different from common multi-agent environments such as SMAC where agents can simply share parameters to solve the task.
  • Task Generalization: we introduce a variety of dexterous manipulation tasks (e.g., handover, lift up, throw, place, put...) as well as enormous target objects from the YCB and SAPIEN dataset (>2,000 objects); this allows meta-RL and multi-task RL algorithms to be tested on the task generalization front.
  • Point Cloud: We provide the ability to use point clouds as observations. We used the depth camera in Isaacc Gym to get the depth image and then convert it to partial point cloud. We can customize the pose and numbers of depth cameras to get point cloud from difference angles. The density of generated point cloud depends on the number of the camera pixels. See the visual input docs.
  • Quick Demos
<div align=center> <img src="assets/image_folder/quick_demo3.gif" align="center" width="600"/> </div>

Contents of this repo are as follows:

For more information about this work, please check our paper.


Installation

Details regarding installation of IsaacGym can be found here. We currently support the Preview Release 3/4 version of IsaacGym.

Pre-requisites

The code has been tested on Ubuntu 18.04/20.04 with Python 3.7/3.8. The minimum recommended NVIDIA driver version for Linux is 470.74 (dictated by support of IsaacGym).

It uses Anaconda to create virtual environments. To install Anaconda, follow instructions here.

Ensure that Isaac Gym works on your system by running one of the examples from the python/examples directory, like joint_monkey.py. Please follow troubleshooting steps described in the Isaac Gym Preview Release 3/4 install instructions if you have any trouble running the samples.

Once Isaac Gym is installed and samples work within your current python environment, install this repo:

<!-- #### Install from PyPI Bi-DexHands is hosted on PyPI. It requires Python >= 3.7. You can simply install Bi-DexHands from PyPI with the following command: ```bash pip install bidexhands ``` -->

Install from source code

You can also install this repo from the source code:

pip install -e .

Introduction

This repository contains complex dexterous hands control tasks. Bi-DexHands is built in the NVIDIA Isaac Gym with high performance guarantee for training RL algorithms. Our environments focus on applying model-free RL/MARL algorithms for bimanual dexterous manipulation, which are considered as a challenging task for traditional control methods.

Getting Started

<span id="task">Tasks</span>

Source code for tasks can be found in envs/tasks. The detailed settings of state/action/reward are in here.

So far, we release the following tasks (with many more to come):

EnvironmentsDescriptionDemo
ShadowHand OverThese environments involve two fixed-position hands. The hand which starts with the object must find a way to hand it over to the second hand.<img src="assets/image_folder/0v2.gif" width="250"/>
ShadowHandCatch UnderarmThese environments again have two hands, however now they have some additional degrees of freedom that allows them to translate/rotate their centre of masses within some constrained region.<img src="assets/image_folder/hand_catch_underarmv2.gif" align="middle" width="250"/>
ShadowHandCatch Over2UnderarmThis environment is made up of half ShadowHandCatchUnderarm and half ShadowHandCatchOverarm, the object needs to be thrown from the vertical hand to the palm-up hand<img src="assets/image_folder/2v2.gif" align="middle" width="250"/>
ShadowHandCatch AbreastThis environment is similar to ShadowHandCatchUnderarm, the difference is that the two hands are changed from relative to side-by-side posture.<img src="assets/image_folder/1v2.gif" align="middle" width="250"/>
ShadowHandCatch TwoCatchUnderarmThese environments involve coordination between the two hands so as to throw the two objects between hands (i.e. swapping them).<img src="assets/image_folder/two_catchv2.gif" align="middle" width="250"/>
ShadowHandLift UnderarmThis environment requires grasping the pot handle with two hands and lifting the pot to the designated position<img src="assets/image_folder/3v2.gif" align="middle" width="250"/>
ShadowHandDoor OpenInwardThis environment requires the closed door to be opened, and the door can only be pulled inwards<img src="assets/image_folder/door_open_inwardv2.gif" align="middle" width="250"/>
ShadowHandDoor OpenOutwardThis environment requires a closed door to be opened and the door can only be pushed outwards<img src="assets/image_folder/open_outwardv2.gif" align="middle" width="250"/>
ShadowHandDoor CloseInwardThis environment requires the open door to be closed, and the door is initially open inwards<img src="assets/image_folder/close_inwardv2.gif" align="middle" width="250"/>
ShadowHand BottleCapThis environment involves two hands and a bottle, we need to hold the bottle with one hand and open the bottle cap with the other hand<img src="assets/image_folder/bottle_capv2.gif" align="middle" width="250"/>
ShadowHandPush BlockThis environment requires both hands to touch the block and push it forward<img src="assets/image_folder/push_block.gif" align="middle" width="250"/>
ShadowHandOpen ScissorsThis environment requires both hands to cooperate to open the scissors<img src="assets/image_folder/scissors.gif" align="middle" width="250"/>
ShadowHandOpen PenCapThis environment requires both hands to cooperate to open the pen cap<img src="assets/image_folder/pen.gif" align="middle" width="250"/>
ShadowHandSwing CupThis environment requires two hands to hold the cup handle and rotate it 90 degrees<img src="assets/image_folder/swing_cup.gif" align="middle" width="250"/>
ShadowHandTurn BottonThis environment requires both hands to press the button<img src="assets/image_folder/switch.gif" align="middle" width="250"/>
ShadowHandGrasp AndPlaceThis environment has a bucket and an object, we need to put the object into the bucket<img src="assets/image_folder/g&p.gif" align="middle" width="250"/>

Training

Training Examples

RL/MARL Examples

For example, if you want to train a policy for the ShadowHandOver task by the PPO algorithm, run this line in bidexhands folder:

python train.py --task=ShadowHandOver --algo=ppo

To select an algorithm, pass --algo=ppo/mappo/happo/hatrpo/... as an argument. For example, if you want to use happo algorithm, run this line in bidexhands folder:

python train.py --task=ShadowHandOver --algo=happo

Supported Single-Agent RL algorithms are listed below:

Supported Multi-Agent RL algorithms are listed below:

Multi-task/Meta RL Examples

The training method of multi-task/meta RL is similar to the RL/MARL, it is only need to select the multi-task/meta categories and the corresponding algorithm. For example, if you want to train a policy for the ShadowHandMT4 categories by the MTPPO algorithm, run this line in bidexhands folder:

python train.py --task=ShadowHandMetaMT4 --algo=mtppo

Supported Multi-task RL algorithms are listed below:

Supported Meta RL algorithms are listed below:

Gym-Like API

We provide a Gym-Like API that allows us to get information from the Isaac Gym environment. Our single-agent Gym-Like wrapper is the code of the Isaac Gym team used, and we have developed a multi-agent Gym-Like wrapper based on it:

class MultiVecTaskPython(MultiVecTask): # Get environment state information def get_state(self): return torch.clamp(self.task.states_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) def step(self, actions): # Stack all agent actions in order and enter them into the environment a_hand_actions = actions[0] for i in range(1, len(actions)): a_hand_actions = torch.hstack((a_hand_actions, actions[i])) actions = a_hand_actions # Clip the actions actions_tensor = torch.clamp(actions, -self.clip_actions, self.clip_actions) self.task.step(actions_tensor) # Obtain information in the environment and distinguish the observation of different agents by hand obs_buf = torch.clamp(self.task.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) hand_obs = [] hand_obs.append(torch.cat([obs_buf[:, :self.num_hand_obs], obs_buf[:, 2*self.num_hand_obs:]], dim=1)) hand_obs.append(torch.cat([obs_buf[:, self.num_hand_obs:2*self.num_hand_obs], obs_buf[:, 2*self.num_hand_obs:]], dim=1)) rewards = self.task.rew_buf.unsqueeze(-1).to(self.rl_device) dones = self.task.reset_buf.to(self.rl_device) # Organize information into Multi-Agent RL format # Refer to https://github.com/tinyzqh/light_mappo/blob/HEAD/envs/env.py sub_agent_obs = [] ... sub_agent_done = [] for i in range(len(self.agent_index[0] + self.agent_index[1])): ... sub_agent_done.append(dones) # Transpose dim-0 and dim-1 values obs_all = torch.transpose(torch.stack(sub_agent_obs), 1, 0) ... done_all = torch.transpose(torch.stack(sub_agent_done), 1, 0) return obs_all, state_all, reward_all, done_all, info_all, None def reset(self): # Use a random action as the first action after the environment reset actions = 0.01 * (1 - 2 * torch.rand([self.task.num_envs, self.task.num_actions * 2], dtype=torch.float32, device=self.rl_device)) # step the simulator self.task.step(actions) # Get the observation and state buffer in the environment, the detailed are the same as step(self, actions) obs_buf = torch.clamp(self.task.obs_buf, -self.clip_obs, self.clip_obs) ... obs = torch.transpose(torch.stack(sub_agent_obs), 1, 0) state_all = torch.transpose(torch.stack(agent_state), 1, 0) return obs, state_all, None

RL/Multi-Agent RL API

We also provide single-agent and multi-agent RL interfaces. In order to adapt to Isaac Gym and speed up the running efficiency, all operations are implemented on GPUs using tensor. Therefore, there is no need to transfer data between the CPU and GPU.

We give an example using HATRPO (the SOTA MARL algorithm for cooperative tasks) to illustrate multi-agent RL APIs, please refer to

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多