医学图像分割新突破 SAM-Med2D模型
SAM-Med2D是基于Segment Anything Model的医学图像分割模型,在包含4.6M图像和19.7M掩码的大规模数据集上进行微调。该项目涵盖10种医学数据模态、4种解剖结构和病变,以及31个主要人体器官。SAM-Med2D在多个测试集上表现优秀,尤其在点提示和边界框提示方面效果显著,为医学图像分割领域提供了新的解决方案。
</a>
<a src="https://img.shields.io/badge/Data-SAMed2D_20M-blue?logo=red" href="https://openxlab.org.cn/datasets/GMAI/SA-Med2D-20M"> <img src="https://img.shields.io/badge/Data-SAMed2D_20M-blue?logo=red">
<a src="https://img.shields.io/badge/cs.CV-2308.16184-b31b1b?logo=arxiv&logoColor=red" href="https://arxiv.org/abs/2308.16184"> <img src="https://img.shields.io/badge/cs.CV-2308.16184-b31b1b?logo=arxiv&logoColor=red">
<a src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat" href="https://github.com/OpenGVLab/SAM-Med2D/blob/main/assets/SAM-Med2D_wechat_group.jpeg"> <img src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat">
</a>
<a target="_blank" href="https://colab.research.google.com/github/OpenGVLab/SAM-Med2D/blob/main/predictor_example.ipynb">
<img src="https://yellow-cdn.veclightyear.com/835a84d5/a759ff59-b7d6-4f5f-b0dc-4e7eaaa4e302.svg" alt="在Colab中打开"/>
</a>
🔥🔥🔥
SAM-Med2D在一个包含460万张图像和1970万个掩码的数据集上进行训练和测试。这个数据集涵盖了10种医学数据模态、4种解剖结构+病变,以及31个主要人体器官。据我们所知,这是目前在数量和类别覆盖范围方面最大、最多样化的医学图像分割数据集。
<p align="center"><img width="800" alt="image" src="https://yellow-cdn.veclightyear.com/835a84d5/99b0ce08-6c1c-42b9-ae4c-2cacec9868d8.png"></p>SAM-Med2D的流程。我们冻结图像编码器,并在每个Transformer块中引入可学习的适配器层,以获取医学领域的特定知识。我们使用点、边界框和掩码信息对提示编码器进行微调,同时通过交互式训练更新掩码解码器的参数。
<p align="center"><img width="800" alt="image" src="https://yellow-cdn.veclightyear.com/835a84d5/47c4cf86-4b6d-4959-b0ee-9c48258cd7fe.png"></p>在我们的原始论文中,我们承认表4中呈现的测试数据存在异常。我们已经对这个项目进行了数据更新,并更正了表4中的值。我们向读者保证,我们的研究团队已经意识到这个问题,并将在下一个版本中更新表4。对于可能造成的任何不便,我们深表歉意。
准备你自己的数据集,参考SAM-Med2D/data_demo
中的样本,根据你的具体场景进行替换。在运行train.py
之前,你需要生成image2label_train.json
文件。
如果你想使用混合精度训练,请安装Apex。如果你不想安装Apex,可以注释掉from apex import amp
这一行,并将use_amp
设置为False。
cd ./SAM-Med2D python train.py
workdir
。data_demo
。sam_checkpoint
。准备您自己的数据集,并参考 SAM-Med2D/data_demo
中的样本,根据您的具体场景进行替换。在运行 test.py
之前,您需要生成 label2image_test.json
文件。
cd ./SAM-Med2D python test.py
workdir
。python3 scripts/export_onnx_encoder_model.py --sam_checkpoint /path/to/sam-med2d_b.pth --output /path/to/sam-med2d_b.encoder.onnx --model-type vit_b --image_size 256 --encoder_adapter True
python3 scripts/export_onnx_model.py --checkpoint /path/to/sam-med2d_b.pth --output /path/to/sam-med2d_b.decoder.onnx --model-type vit_b --return-single-mask
# cd examples/SAM-Med2D-onnxruntime
python3 main.py --encoder_model /path/to/sam-med2d_b.encoder.onnx --decoder_model /path/to/sam-med2d_b.decoder.onnx
本项目采用 Apache 2.0 许可证。
如果您对 SAM-Med2D 有任何问题,请添加此微信 ID 到微信群讨论:
<p align="center"><img width="300" alt="image" src="https://yellow-cdn.veclightyear.com/835a84d5/48770dce-f0d6-49cb-ad76-57c42c5c1196.png"></p>@misc{cheng2023sammed2d,
title={SAM-Med2D},
author={Junlong Cheng and Jin Ye and Zhongying Deng and Jianpin Chen and Tianbin Li and Haoyu Wang and Yanzhou Su and
Ziyan Huang and Jilong Chen and Lei Jiangand Hui Sun and Junjun He and Shaoting Zhang and Min Zhu and Yu Qiao},
year={2023},
eprint={2308.16184},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{ye2023samed2d20m,
title={SA-Med2D-20M Dataset: Segment Anything in 2D Medical Imaging with 20 Million masks},
author={Jin Ye and Junlong Cheng and Jianpin Chen and Zhongying Deng and Tianbin Li and Haoyu Wang and Yanzhou Su and Ziyan Huang and Jilong Chen and Lei Jiang and Hui Sun and Min Zhu and Shaoting Zhang and Junjun He and Yu Qiao},
year={2023},
eprint={2311.11969},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多 功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加 速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号