TopoNet

TopoNet

自动驾驶场景拓扑推理的图神经网络方法

TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。

TopoNet场景拓扑推理自动驾驶图神经网络OpenLane-V2Github开源项目

基于图的拓扑推理用于驾驶场景

arXiv OpenLane-V2 LICENSE

方法


本仓库包含 TopoNet 的源代码, 基于图的拓扑推理用于驾驶场景

TopoNet 是第一个端到端的框架,能够抽象交通知识超越常规感知任务,即从传感器输入"推理道路中心线和交通元素之间的连接"。它统一了异质特征学习,并通过图神经网络架构和知识图设计增强了特征交互。

相比于识别车道,我们坚持建模车道拓扑更为"合适"来构建感知框架内的道路组件,从而促进最终驾驶舒适。这与UniAD理念一致。

目录

新闻

  • 置顶: 排行榜用于车道拓扑挑战比赛全年开放常规提交。本挑战将于2024年恢复。
  • [2023/11] :fire:已发布OpenLane-V2子集B的代码和模型!
  • [2023/08] 已发布TopoNet的代码和模型!
  • [2023/04] TopoNet 论文已在arXiv上发布。
  • [2023/01] 介绍在CVPR 2023上举办的自动驾驶挑战赛车道拓扑赛道。

主要结果

OpenLane-V2 子集A验证集结果

我们在 Openlane-V2 子集A 验证集上提供结果。

方法主干网络轮次DET<sub>l</sub>TOP<sub>ll</sub>DET<sub>t</sub>TOP<sub>lt</sub>OLS
STSUResNet-502412.70.543.015.125.4
VectorMapNetResNet-502411.10.441.76.220.8
MapTRResNet-50248.30.243.55.820.0
MapTR*ResNet-502417.71.143.510.426.0
TopoNetResNet-502428.64.148.620.335.6

:fire:: 基于更新的v1.1 OpenLane-V2开发包和指标,我们重新评估了TopoNet和其他SOTA模型的性能。更多细节请参见OpenLane-V2的issue #76

方法主干网络轮次DET<sub>l</sub>TOP<sub>ll</sub>DET<sub>t</sub>TOP<sub>lt</sub>OLS
STSUResNet-502412.72.943.019.829.3
VectorMapNetResNet-502411.12.741.79.224.9
MapTRResNet-50248.32.343.58.924.2
MapTR*ResNet-502417.75.943.515.131.0
TopoNetResNet-502428.610.948.623.839.8

*: 基于Chamfer距离的匹配结果评估。
TopoNet的结果来自本仓库。

OpenLane-V2 子集B验证集结果

方法主干网络轮次DET<sub>l</sub>TOP<sub>ll</sub>DET<sub>t</sub>TOP<sub>lt</sub>OLS
TopoNetResNet-502424.46.752.616.736.0

结果基于更新的v1.1 OpenLane-V2开发包和指标。
TopoNet的结果来自本仓库。

模型库

模型数据集骨干网络迭代轮数OLS内存配置下载
TopoNet-R50subset-AResNet-502439.812.3G配置检查点 / 日志
TopoNet-R50subset-BResNet-502436.08.2G配置检查点 / 日志

前提条件

  • Linux
  • Python 3.8.x
  • NVIDIA GPU + CUDA 11.1
  • PyTorch 1.9.1

安装

我们建议使用 conda 来运行代码。

conda create -n toponet python=3.8 -y conda activate toponet # (可选) 如果您的电脑上已经安装了 CUDA, 跳过这一步 conda install cudatoolkit=11.1.1 -c conda-forge pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

安装 mm-系列包。

pip install mmcv-full==1.5.2 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html pip install mmdet==2.26.0 pip install mmsegmentation==0.29.1 pip install mmdet3d==1.0.0rc6

安装其他所需的包。

pip install -r requirements.txt

准备数据集

按照 OpenLane-V2 repo 下载数据并运行 预处理 代码。

cd TopoNet mkdir data && cd data ln -s {PATH to OpenLane-V2 repo}/data/OpenLane-V2

设置完成后, data 文件夹的层次结构如下:

data/OpenLane-V2
├── train
|   └── ...
├── val
|   └── ...
├── test
|   └── ...
├── data_dict_subset_A_train.pkl
├── data_dict_subset_A_val.pkl
├── data_dict_subset_B_train.pkl
├── data_dict_subset_B_val.pkl
├── ...

训练和评估

训练

我们建议使用 8 个 GPU 进行训练。如果使用不同数量的 GPU, 您可以通过配置 --autoscale-lr 选项来提高性能。训练日志将保存到 work_dirs/toponet

cd TopoNet mkdir -p work_dirs/toponet ./tools/dist_train.sh 8 [--autoscale-lr]

评估

您可以设置 --show 来可视化结果。

./tools/dist_test.sh 8 [--show]

许可证

所有资产和代码都受 Apache 2.0 许可证 的约束, 除非另有说明。

引用

如果这项工作对您的研究有帮助, 请考虑引用以下 BibTeX 条目。

@article{li2023toponet, title={Graph-based Topology Reasoning for Driving Scenes}, author={Li, Tianyu and Chen, Li and Wang, Huijie and Li, Yang and Yang, Jiazhi and Geng, Xiangwei and Jiang, Shengyin and Wang, Yuting and Xu, Hang and Xu, Chunjing and Yan, Junchi and Luo, Ping and Li, Hongyang}, journal={arXiv preprint arXiv:2304.05277}, year={2023} } @inproceedings{wang2023openlanev2, title={OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping}, author={Wang, Huijie and Li, Tianyu and Li, Yang and Chen, Li and Sima, Chonghao and Liu, Zhenbo and Wang, Bangjun and Jia, Peijin and Wang, Yuting and Jiang, Shengyin and Wen, Feng and Xu, Hang and Luo, Ping and Yan, Junchi and Zhang, Wei and Li, Hongyang}, booktitle={NeurIPS}, year={2023} }

相关资源

我们感谢以下开源项目的贡献者,使得这项工作得以实现:

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
下拉加载更多