InfiniteBench

InfiniteBench

长文本语言模型评测基准 挑战10万词极限

InfiniteBench是一个专门评测语言模型超长文本处理能力的基准工具。它设计了12个涵盖真实和合成场景的任务,用于测试模型在10万词以上上下文中的理解和推理能力。该基准不仅有助于推动语言模型技术进步,还为改进LLM应用提供了重要参考。InfiniteBench的多样性和专业性使其成为评估长文本处理能力的有效工具。

InfiniteBench长文本评估语言模型基准测试人工智能Github开源项目
<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/eee8f597-204b-4ac0-8df1-86242560322a.jpg" width="500px"/> <br /> <br />

InfiniteBench:将长上下文评估延伸至10万个标记以上

<p align="center"> <a href="./README_ZH.md">中文</a> • <a href="./README.md">英文</a> • <a href="https://arxiv.org/abs/2402.13718">论文</a> </p> </div>

简介

欢迎来到InfiniteBench,这是一个尖端基准测试,专门用于评估语言模型处理、理解和推理超长上下文(10万个以上标记)的能力。长上下文对于增强大型语言模型的应用和实现高级交互至关重要。InfiniteBench旨在通过测试10万个以上标记的上下文长度来突破语言模型的界限,这是传统数据集长度的10倍。

特点

  • 超长上下文: InfiniteBench在测试10万个以上标记上下文长度的语言模型方面开创先河,为该领域提供了无与伦比的挑战。
  • 多样化领域: 该基准测试包含12个独特任务,每个任务都旨在评估延长上下文中语言处理和理解的不同方面。
  • 专门测试: InfiniteBench包含的任务是已知最先进的大型语言模型在使用较短上下文时能够胜任的。这确保了性能下降仅由上下文长度引起。
  • 真实和合成场景: 任务混合了真实世界场景和合成构造,确保对模型进行全面评估。真实世界场景使测试更加实用,而合成场景则为进一步延长上下文长度留下了空间。

任务组成

<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/15429b14-30e1-472a-b09b-f572b6e42ad5.png" width="480px"> </div>
任务名称上下文示例数量平均输入标记数平均输出标记数描述
En.Sum虚构书籍103171.5k1.1k通过核心实体替换创建的虚构书籍摘要
En.QA虚构书籍351192.6k4.8基于虚构书籍的自由形式问答
En.MC虚构书籍229184.4k5.3源自虚构书籍的多项选择题
En.Dia剧本200103.6k3.4在部分匿名化的剧本中识别说话者
Zh.QA新书1752068.6k6.3基于新收集的一组书籍进行问答
Code.Debug代码文档394114.7k4.8找出代码仓库中包含崩溃错误的函数(以多项选择形式呈现)
Code.Run合成40075.2k1.3模拟执行多个简单的合成函数
Math.Calc合成5043.9k43.9k涉及超长算术方程的计算
Math.Find合成35087.9k1.3在冗长列表中查找特殊整数
Retrieve.PassKey1合成590122.4k2.0在嘈杂的长上下文中检索隐藏的密钥
Retrieve.Number合成590122.4k4.0在嘈杂的长上下文中定位重复的隐藏数字
Retrieve.KV2合成50089.9k22.7从字典和键中找到对应的值

如何下载数据

点击这里直接从🤗 Huggingface下载数据:https://huggingface.co/datasets/xinrongzhang2022/InfiniteBench

使用🤗 Datasets

或者,您可以使用🤗 Datasets库按如下方式下载。

from datasets import load_dataset dataset = load_dataset("xinrongzhang2022/InfiniteBench")

使用脚本

cd InfiniteBench bash scripts/download_dataset.sh

这将直接将数据下载到data目录。

评估结果

我们对最先进的专有和开源大型语言模型进行了评估,结果如下。

任务名称GPT-4YaRN-Mistral-7BKimi-ChatClaude 2Yi-6B-200KYi-34B-200KChatglm3-6B-128K
检索.密码100%92.71%98.14%97.80%100.00%100.00%92.20%
检索.数字100%56.61%95.42%98.14%94.92%100.00%80.68%
检索.键值89.00%< 5%53.60%65.40%< 5%< 5%< 5%
英文.总结14.73%9.09%17.96%14.50%< 5%< 5%< 5%
英文.问答22.44%9.55%16.52%11.97%9.20%12.17%< 5%
英文.多选67.25%27.95%72.49%62.88%36.68%38.43%10.48%
英文.对话8.50%7.50%11.50%46.50%< 5%< 5%< 5%
中文.问答25.96%16.98%17.93%9.64%15.07%13.61%< 5%
代码.调试37.06%< 5%17.77%< 5%9.14%13.96%7.36%
代码.运行23.25%< 5%< 5%< 5%< 5%< 5%< 5%
数学.计算< 5%< 5%< 5%< 5%< 5%< 5%< 5%
数学.查找60.00%17.14%12.57%32.29%< 5%25.71%7.71%

注意:

  1. YaRN-Mistral-7B的评估代码是我们自己实现的,如有任何问题,请联系我们或提交问题。

  2. Kimi-Chat、Claude 2和GPT-4使用官方API的默认配置进行评估。

  3. 对于数学.计算任务,括号中的值以0.01%为测量单位。这是因为在这个任务中很容易得到非常低的分数。

  4. 数学.查找、数学.计算、代码.运行、代码.调试、英文.对话、英文.多选、检索.键值、检索.数字和检索.密码任务的评估指标是准确率;

    中文.问答和英文.问答任务的评估指标是ROUGE F1分数;

    英文.总结任务的评估指标是来自🤗 Evaluate库的rougeLsum分数。

<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/4f43fc18-14d0-4b22-8590-baab8edceb29.png" width="480px"> </div>

安装

pip install -r requirements.txt

如何运行

将数据集下载到data文件夹(或通过--data_dir参数设置数据集的位置)。数据文件夹结构应如下所示:

InfiniteBench
├── data
│   ├── code_debug.jsonl
│   ├── code_run.jsonl
│   ├── kv_retrieval.jsonl
│   ├── longbook_choice_eng.jsonl
│   ├── longbook_qa_chn.jsonl
│   ├── longbook_qa_eng.jsonl
│   ├── longbook_sum_eng.jsonl
│   ├── longdialogue_qa_eng.jsonl
│   ├── math_calc.jsonl
│   ├── math_find.jsonl
│   ├── number_string.jsonl
│   ├── passkey.jsonl
│   └── construct_synthetic_dataset.py
...

然后,在src文件夹中执行:

python eval_yarn_mistral.py --task kv_retrieval python eval_gpt4.py --task longbook_sum_qa python eval_rwkv.py --task passkey

可用的任务有:

任务名称--task中指定的参数
英文.总结longbook_sum_qa
英文.问答longbook_qa_eng
英文.多选longbook_choice_eng
英文.对话longdialogue_qa_eng
中文.问答longbook_qa_chn
代码.调试code_debug
代码.运行code_run
数学.计算math_calc
数学.查找math_find
检索.密码passkey
检索.数字number_string
检索.键值kv_retrieval

引用

这将在我们的预印本论文发布后更新。

@misc{zhang2024inftybench, title={$\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens}, author={Xinrong Zhang and Yingfa Chen and Shengding Hu and Zihang Xu and Junhao Chen and Moo Khai Hao and Xu Han and Zhen Leng Thai and Shuo Wang and Zhiyuan Liu and Maosong Sun}, year={2024}, eprint={2402.13718}, archivePrefix={arXiv}, primaryClass={cs.CL} }

致谢

感谢冯聪、翟中午、曾国洋、宋晨阳、罗仁杰、何超群、涂玉琳、平博文、黄宇杰、梅煜东、张凯活、赵伟霖、孙奥、陈雨林、崔淦曲。

参考文献

Footnotes

  1. Mohtashami, Amirkeivan and Martin Jaggi. "Landmark Attention: Random-Access Infinite Context Length for Transformers." ArXiv abs/2305.16300 (2023): n. pag.

  2. Liu, Nelson F. et al. "Lost in the Middle: How Language Models Use Long Contexts." ArXiv abs/2307.03172 (2023): n. pag.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多