InfiniteBench

InfiniteBench

长文本语言模型评测基准 挑战10万词极限

InfiniteBench是一个专门评测语言模型超长文本处理能力的基准工具。它设计了12个涵盖真实和合成场景的任务,用于测试模型在10万词以上上下文中的理解和推理能力。该基准不仅有助于推动语言模型技术进步,还为改进LLM应用提供了重要参考。InfiniteBench的多样性和专业性使其成为评估长文本处理能力的有效工具。

InfiniteBench长文本评估语言模型基准测试人工智能Github开源项目
<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/eee8f597-204b-4ac0-8df1-86242560322a.jpg" width="500px"/> <br /> <br />

InfiniteBench:将长上下文评估延伸至10万个标记以上

<p align="center"> <a href="./README_ZH.md">中文</a> • <a href="./README.md">英文</a> • <a href="https://arxiv.org/abs/2402.13718">论文</a> </p> </div>

简介

欢迎来到InfiniteBench,这是一个尖端基准测试,专门用于评估语言模型处理、理解和推理超长上下文(10万个以上标记)的能力。长上下文对于增强大型语言模型的应用和实现高级交互至关重要。InfiniteBench旨在通过测试10万个以上标记的上下文长度来突破语言模型的界限,这是传统数据集长度的10倍。

特点

  • 超长上下文: InfiniteBench在测试10万个以上标记上下文长度的语言模型方面开创先河,为该领域提供了无与伦比的挑战。
  • 多样化领域: 该基准测试包含12个独特任务,每个任务都旨在评估延长上下文中语言处理和理解的不同方面。
  • 专门测试: InfiniteBench包含的任务是已知最先进的大型语言模型在使用较短上下文时能够胜任的。这确保了性能下降仅由上下文长度引起。
  • 真实和合成场景: 任务混合了真实世界场景和合成构造,确保对模型进行全面评估。真实世界场景使测试更加实用,而合成场景则为进一步延长上下文长度留下了空间。

任务组成

<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/15429b14-30e1-472a-b09b-f572b6e42ad5.png" width="480px"> </div>
任务名称上下文示例数量平均输入标记数平均输出标记数描述
En.Sum虚构书籍103171.5k1.1k通过核心实体替换创建的虚构书籍摘要
En.QA虚构书籍351192.6k4.8基于虚构书籍的自由形式问答
En.MC虚构书籍229184.4k5.3源自虚构书籍的多项选择题
En.Dia剧本200103.6k3.4在部分匿名化的剧本中识别说话者
Zh.QA新书1752068.6k6.3基于新收集的一组书籍进行问答
Code.Debug代码文档394114.7k4.8找出代码仓库中包含崩溃错误的函数(以多项选择形式呈现)
Code.Run合成40075.2k1.3模拟执行多个简单的合成函数
Math.Calc合成5043.9k43.9k涉及超长算术方程的计算
Math.Find合成35087.9k1.3在冗长列表中查找特殊整数
Retrieve.PassKey1合成590122.4k2.0在嘈杂的长上下文中检索隐藏的密钥
Retrieve.Number合成590122.4k4.0在嘈杂的长上下文中定位重复的隐藏数字
Retrieve.KV2合成50089.9k22.7从字典和键中找到对应的值

如何下载数据

点击这里直接从🤗 Huggingface下载数据:https://huggingface.co/datasets/xinrongzhang2022/InfiniteBench

使用🤗 Datasets

或者,您可以使用🤗 Datasets库按如下方式下载。

from datasets import load_dataset dataset = load_dataset("xinrongzhang2022/InfiniteBench")

使用脚本

cd InfiniteBench bash scripts/download_dataset.sh

这将直接将数据下载到data目录。

评估结果

我们对最先进的专有和开源大型语言模型进行了评估,结果如下。

任务名称GPT-4YaRN-Mistral-7BKimi-ChatClaude 2Yi-6B-200KYi-34B-200KChatglm3-6B-128K
检索.密码100%92.71%98.14%97.80%100.00%100.00%92.20%
检索.数字100%56.61%95.42%98.14%94.92%100.00%80.68%
检索.键值89.00%< 5%53.60%65.40%< 5%< 5%< 5%
英文.总结14.73%9.09%17.96%14.50%< 5%< 5%< 5%
英文.问答22.44%9.55%16.52%11.97%9.20%12.17%< 5%
英文.多选67.25%27.95%72.49%62.88%36.68%38.43%10.48%
英文.对话8.50%7.50%11.50%46.50%< 5%< 5%< 5%
中文.问答25.96%16.98%17.93%9.64%15.07%13.61%< 5%
代码.调试37.06%< 5%17.77%< 5%9.14%13.96%7.36%
代码.运行23.25%< 5%< 5%< 5%< 5%< 5%< 5%
数学.计算< 5%< 5%< 5%< 5%< 5%< 5%< 5%
数学.查找60.00%17.14%12.57%32.29%< 5%25.71%7.71%

注意:

  1. YaRN-Mistral-7B的评估代码是我们自己实现的,如有任何问题,请联系我们或提交问题。

  2. Kimi-Chat、Claude 2和GPT-4使用官方API的默认配置进行评估。

  3. 对于数学.计算任务,括号中的值以0.01%为测量单位。这是因为在这个任务中很容易得到非常低的分数。

  4. 数学.查找、数学.计算、代码.运行、代码.调试、英文.对话、英文.多选、检索.键值、检索.数字和检索.密码任务的评估指标是准确率;

    中文.问答和英文.问答任务的评估指标是ROUGE F1分数;

    英文.总结任务的评估指标是来自🤗 Evaluate库的rougeLsum分数。

<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/4f43fc18-14d0-4b22-8590-baab8edceb29.png" width="480px"> </div>

安装

pip install -r requirements.txt

如何运行

将数据集下载到data文件夹(或通过--data_dir参数设置数据集的位置)。数据文件夹结构应如下所示:

InfiniteBench
├── data
│   ├── code_debug.jsonl
│   ├── code_run.jsonl
│   ├── kv_retrieval.jsonl
│   ├── longbook_choice_eng.jsonl
│   ├── longbook_qa_chn.jsonl
│   ├── longbook_qa_eng.jsonl
│   ├── longbook_sum_eng.jsonl
│   ├── longdialogue_qa_eng.jsonl
│   ├── math_calc.jsonl
│   ├── math_find.jsonl
│   ├── number_string.jsonl
│   ├── passkey.jsonl
│   └── construct_synthetic_dataset.py
...

然后,在src文件夹中执行:

python eval_yarn_mistral.py --task kv_retrieval python eval_gpt4.py --task longbook_sum_qa python eval_rwkv.py --task passkey

可用的任务有:

任务名称--task中指定的参数
英文.总结longbook_sum_qa
英文.问答longbook_qa_eng
英文.多选longbook_choice_eng
英文.对话longdialogue_qa_eng
中文.问答longbook_qa_chn
代码.调试code_debug
代码.运行code_run
数学.计算math_calc
数学.查找math_find
检索.密码passkey
检索.数字number_string
检索.键值kv_retrieval

引用

这将在我们的预印本论文发布后更新。

@misc{zhang2024inftybench, title={$\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens}, author={Xinrong Zhang and Yingfa Chen and Shengding Hu and Zihang Xu and Junhao Chen and Moo Khai Hao and Xu Han and Zhen Leng Thai and Shuo Wang and Zhiyuan Liu and Maosong Sun}, year={2024}, eprint={2402.13718}, archivePrefix={arXiv}, primaryClass={cs.CL} }

致谢

感谢冯聪、翟中午、曾国洋、宋晨阳、罗仁杰、何超群、涂玉琳、平博文、黄宇杰、梅煜东、张凯活、赵伟霖、孙奥、陈雨林、崔淦曲。

参考文献

Footnotes

  1. Mohtashami, Amirkeivan and Martin Jaggi. "Landmark Attention: Random-Access Infinite Context Length for Transformers." ArXiv abs/2305.16300 (2023): n. pag.

  2. Liu, Nelson F. et al. "Lost in the Middle: How Language Models Use Long Contexts." ArXiv abs/2307.03172 (2023): n. pag.

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多