Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been developed (paper 1, paper 2) since the beginning of their era. To prove their versatility, those were tested in various domains on various applications, especially when they are hybridized, modified or adapted. However, implementation of nature-inspired algorithms is sometimes a difficult, complex and tedious task. In order to break this wall, NiaPy is intended for simple and quick use, without spending time for implementing algorithms from scratch.
Our mission is to build a collection of nature-inspired algorithms and create a simple interface for managing the optimization process. NiaPy offers:
Install NiaPy with pip:
pip install niapy
To install NiaPy with conda, use:
conda install -c niaorg niapy
To install NiaPy on Fedora, use:
dnf install python3-niapy
To install NiaPy on Arch Linux, please use an AUR helper:
yay -Syyu python-niapy
To install NiaPy on Alpine Linux, please enable Community repository and use:
apk add py3-niapy
To install NiaPy on NixOS, please use:
nix-env -iA nixos.python310Packages.niapy
To install NiaPy on Void Linux, use:
xbps-install -S python3-niapy
In case you want to install directly from the source code, use:
pip install git+https://github.com/NiaOrg/NiaPy.git
Click here for the list of implemented algorithms.
Click here for the list of implemented test problems.
After installation, you can import NiaPy as any other Python module:
$ python >>> import niapy >>> niapy.__version__
Let's go through a basic and advanced example.
Let’s say, we want to try out PSO against the Pintér problem function. Firstly, we have to create new file, with name, for example basic_example.py. Then we have to import chosen algorithm from NiaPy, so we can use it. Afterwards we initialize ParticleSwarmAlgorithm class instance and run the algorithm. Given bellow is the complete source code of basic example.
from niapy.algorithms.basic import ParticleSwarmAlgorithm from niapy.task import Task # we will run 10 repetitions of Weighted, velocity clamped PSO on the Pinter problem for i in range(10): task = Task(problem='pinter', dimension=10, max_evals=10000) algorithm = ParticleSwarmAlgorithm(population_size=100, w=0.9, c1=0.5, c2=0.3, min_velocity=-1, max_velocity=1) best_x, best_fit = algorithm.run(task) print(best_fit)
Given example can be run with python basic_example.py command and should give you similar output as following:
0.008773534890863646 0.036616190934621755 186.75116812592546 0.024186452828927896 263.5697469837348 45.420706924365916 0.6946753611091367 7.756100204780568 5.839673314425907 0.06732518679742806
In this example we will show you how to implement a custom problem class and use it with any of implemented algorithms. First let's create new file named advanced_example.py. As in the previous examples we wil import algorithm we want to use from niapy module.
For our custom optimization function, we have to create new class. Let's name it MyProblem. In the initialization method of MyProblem class we have to set the dimension, lower and upper bounds of the problem. Afterwards we have to override the abstract method _evaluate which takes a parameter x, the solution to be evaluated, and returns the function value. Now we should have something similar as is shown in code snippet bellow.
import numpy as np from niapy.task import Task from niapy.problems import Problem from niapy.algorithms.basic import ParticleSwarmAlgorithm # our custom problem class class MyProblem(Problem): def __init__(self, dimension, lower=-10, upper=10, *args, **kwargs): super().__init__(dimension, lower, upper, *args, **kwargs) def _evaluate(self, x): return np.sum(x ** 2)
Now, all we have to do is to initialize our algorithm as in previous examples and pass an instance of our MyProblem class as the problem argument.
my_problem = MyProblem(dimension=20) for i in range(10): task = Task(problem=my_problem, max_iters=100) algo = ParticleSwarmAlgorithm(population_size=100, w=0.9, c1=0.5, c2=0.3, min_velocity=-1, max_velocity=1) # running algorithm returns best found minimum best_x, best_fit = algo.run(task) # printing best minimum print(best_fit)
Now we can run our advanced example with following command: python advanced_example.py. The results should be similar to those bellow.
0.002455614050761476 0.000557652972392164 0.0029791325679865413 0.0009443595274525336 0.001012658824492069 0.0006837236892816072 0.0026789725774685495 0.005017746993004601 0.0011654473402322196 0.0019074442166293853
For more usage examples please look at examples folder.
More advanced examples can also be found in the NiaPy-examples repository.
Are you using NiaPy in your project or research? Please cite us!
Vrbančič, G., Brezočnik, L., Mlakar, U., Fister, D., & Fister Jr., I. (2018).
NiaPy: Python microframework for building nature-inspired algorithms.
Journal of Open Source Software, 3(23), 613\. <https://doi.org/10.21105/joss.00613>
@article{NiaPyJOSS2018,
author = {Vrban{\v{c}}i{\v{c}}, Grega and Brezo{\v{c}}nik, Lucija
and Mlakar, Uro{\v{s}} and Fister, Du{\v{s}}an and {Fister Jr.}, Iztok},
title = {{NiaPy: Python microframework for building nature-inspired algorithms}},
journal = {{Journal of Open Source Software}},
year = {2018},
volume = {3},
issue = {23},
issn = {2475-9066},
doi = {10.21105/joss.00613},
url = {https://doi.org/10.21105/joss.00613}
}
TY - JOUR
T1 - NiaPy: Python microframework for building nature-inspired algorithms
AU - Vrbančič, Grega
AU - Brezočnik, Lucija
AU - Mlakar, Uroš
AU - Fister, Dušan
AU - Fister Jr., Iztok
PY - 2018
JF - Journal of Open Source Software
VL - 3
IS - 23
DO - 10.21105/joss.00613
UR - http://joss.theoj.org/papers/10.21105/joss.00613
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tr> <td align="center"><a href="https://github.com/GregaVrbancic"><img src="https://avatars0.githubusercontent.com/u/1894788?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Grega Vrbančič</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=GregaVrbancic" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=GregaVrbancic" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3AGregaVrbancic" title="Bug reports">🐛</a> <a href="#example-GregaVrbancic" title="Examples">💡</a> <a href="#maintenance-GregaVrbancic" title="Maintenance">🚧</a> <a href="#platform-GregaVrbancic" title="Packaging/porting to new platform">📦</a> <a href="#projectManagement-GregaVrbancic" title="Project Management">📆</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3AGregaVrbancic" title="Reviewed Pull Requests">👀</a></td> <td align="center"><a href="https://github.com/firefly-cpp"><img src="https://avatars2.githubusercontent.com/u/1633361?v=4?s=100" width="100px;" alt=""/><br /><sub><b>firefly-cpp</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Afirefly-cpp" title="Bug reports">🐛</a> <a href="#example-firefly-cpp" title="Examples">💡</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3Afirefly-cpp" title="Reviewed Pull Requests">👀</a> <a href="#question-firefly-cpp" title="Answering Questions">💬</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Tests">⚠️</a> <a href="#platform-firefly-cpp" title="Packaging/porting to new platform">📦</a></td> <td align="center"><a href="https://github.com/lucijabrezocnik"><img src="https://avatars2.githubusercontent.com/u/36370699?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Lucija Brezočnik</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=lucijabrezocnik" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=lucijabrezocnik" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Alucijabrezocnik" title="Bug reports">🐛</a> <a href="#example-lucijabrezocnik" title="Examples">💡</a></td> <td align="center"><a href="https://github.com/mlaky88"><img src="https://avatars1.githubusercontent.com/u/23091578?v=4?s=100" width="100px;" alt=""/><br /><sub><b>mlaky88</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=mlaky88" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=mlaky88" title="Documentation">📖</a> <a href="#example-mlaky88" title="Examples">💡</a></td> <td align="center"><a href="https://github.com/rhododendrom"><img src="https://avatars1.githubusercontent.com/u/3198785?v=4?s=100" width="100px;" alt=""/><br /><sub><b>rhododendrom</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=rhododendrom" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=rhododendrom" title="Documentation">📖</a> <a href="#example-rhododendrom" title="Examples">💡</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Arhododendrom" title="Bug reports">🐛</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3Arhododendrom" title="Reviewed Pull Requests">👀</a></td> <td align="center"><a href="https://github.com/kb2623"><img src="https://avatars3.githubusercontent.com/u/7480221?s=460&v=4?s=100" width="100px;" alt=""/><br /><sub><b>Klemen</b></sub></a><br /><a一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播 ,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号