Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been developed (paper 1, paper 2) since the beginning of their era. To prove their versatility, those were tested in various domains on various applications, especially when they are hybridized, modified or adapted. However, implementation of nature-inspired algorithms is sometimes a difficult, complex and tedious task. In order to break this wall, NiaPy is intended for simple and quick use, without spending time for implementing algorithms from scratch.
Our mission is to build a collection of nature-inspired algorithms and create a simple interface for managing the optimization process. NiaPy offers:
Install NiaPy with pip:
pip install niapy
To install NiaPy with conda, use:
conda install -c niaorg niapy
To install NiaPy on Fedora, use:
dnf install python3-niapy
To install NiaPy on Arch Linux, please use an AUR helper:
yay -Syyu python-niapy
To install NiaPy on Alpine Linux, please enable Community repository and use:
apk add py3-niapy
To install NiaPy on NixOS, please use:
nix-env -iA nixos.python310Packages.niapy
To install NiaPy on Void Linux, use:
xbps-install -S python3-niapy
In case you want to install directly from the source code, use:
pip install git+https://github.com/NiaOrg/NiaPy.git
Click here for the list of implemented algorithms.
Click here for the list of implemented test problems.
After installation, you can import NiaPy as any other Python module:
$ python >>> import niapy >>> niapy.__version__
Let's go through a basic and advanced example.
Let’s say, we want to try out PSO against the Pintér problem function. Firstly, we have to create new file, with name, for example basic_example.py. Then we have to import chosen algorithm from NiaPy, so we can use it. Afterwards we initialize ParticleSwarmAlgorithm class instance and run the algorithm. Given bellow is the complete source code of basic example.
from niapy.algorithms.basic import ParticleSwarmAlgorithm from niapy.task import Task # we will run 10 repetitions of Weighted, velocity clamped PSO on the Pinter problem for i in range(10): task = Task(problem='pinter', dimension=10, max_evals=10000) algorithm = ParticleSwarmAlgorithm(population_size=100, w=0.9, c1=0.5, c2=0.3, min_velocity=-1, max_velocity=1) best_x, best_fit = algorithm.run(task) print(best_fit)
Given example can be run with python basic_example.py command and should give you similar output as following:
0.008773534890863646 0.036616190934621755 186.75116812592546 0.024186452828927896 263.5697469837348 45.420706924365916 0.6946753611091367 7.756100204780568 5.839673314425907 0.06732518679742806
In this example we will show you how to implement a custom problem class and use it with any of implemented algorithms. First let's create new file named advanced_example.py. As in the previous examples we wil import algorithm we want to use from niapy module.
For our custom optimization function, we have to create new class. Let's name it MyProblem. In the initialization method of MyProblem class we have to set the dimension, lower and upper bounds of the problem. Afterwards we have to override the abstract method _evaluate which takes a parameter x, the solution to be evaluated, and returns the function value. Now we should have something similar as is shown in code snippet bellow.
import numpy as np from niapy.task import Task from niapy.problems import Problem from niapy.algorithms.basic import ParticleSwarmAlgorithm # our custom problem class class MyProblem(Problem): def __init__(self, dimension, lower=-10, upper=10, *args, **kwargs): super().__init__(dimension, lower, upper, *args, **kwargs) def _evaluate(self, x): return np.sum(x ** 2)
Now, all we have to do is to initialize our algorithm as in previous examples and pass an instance of our MyProblem class as the problem argument.
my_problem = MyProblem(dimension=20) for i in range(10): task = Task(problem=my_problem, max_iters=100) algo = ParticleSwarmAlgorithm(population_size=100, w=0.9, c1=0.5, c2=0.3, min_velocity=-1, max_velocity=1) # running algorithm returns best found minimum best_x, best_fit = algo.run(task) # printing best minimum print(best_fit)
Now we can run our advanced example with following command: python advanced_example.py. The results should be similar to those bellow.
0.002455614050761476 0.000557652972392164 0.0029791325679865413 0.0009443595274525336 0.001012658824492069 0.0006837236892816072 0.0026789725774685495 0.005017746993004601 0.0011654473402322196 0.0019074442166293853
For more usage examples please look at examples folder.
More advanced examples can also be found in the NiaPy-examples repository.
Are you using NiaPy in your project or research? Please cite us!
Vrbančič, G., Brezočnik, L., Mlakar, U., Fister, D., & Fister Jr., I. (2018).
NiaPy: Python microframework for building nature-inspired algorithms.
Journal of Open Source Software, 3(23), 613\. <https://doi.org/10.21105/joss.00613>
@article{NiaPyJOSS2018,
author = {Vrban{\v{c}}i{\v{c}}, Grega and Brezo{\v{c}}nik, Lucija
and Mlakar, Uro{\v{s}} and Fister, Du{\v{s}}an and {Fister Jr.}, Iztok},
title = {{NiaPy: Python microframework for building nature-inspired algorithms}},
journal = {{Journal of Open Source Software}},
year = {2018},
volume = {3},
issue = {23},
issn = {2475-9066},
doi = {10.21105/joss.00613},
url = {https://doi.org/10.21105/joss.00613}
}
TY - JOUR
T1 - NiaPy: Python microframework for building nature-inspired algorithms
AU - Vrbančič, Grega
AU - Brezočnik, Lucija
AU - Mlakar, Uroš
AU - Fister, Dušan
AU - Fister Jr., Iztok
PY - 2018
JF - Journal of Open Source Software
VL - 3
IS - 23
DO - 10.21105/joss.00613
UR - http://joss.theoj.org/papers/10.21105/joss.00613
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tr> <td align="center"><a href="https://github.com/GregaVrbancic"><img src="https://avatars0.githubusercontent.com/u/1894788?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Grega Vrbančič</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=GregaVrbancic" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=GregaVrbancic" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3AGregaVrbancic" title="Bug reports">🐛</a> <a href="#example-GregaVrbancic" title="Examples">💡</a> <a href="#maintenance-GregaVrbancic" title="Maintenance">🚧</a> <a href="#platform-GregaVrbancic" title="Packaging/porting to new platform">📦</a> <a href="#projectManagement-GregaVrbancic" title="Project Management">📆</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3AGregaVrbancic" title="Reviewed Pull Requests">👀</a></td> <td align="center"><a href="https://github.com/firefly-cpp"><img src="https://avatars2.githubusercontent.com/u/1633361?v=4?s=100" width="100px;" alt=""/><br /><sub><b>firefly-cpp</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Afirefly-cpp" title="Bug reports">🐛</a> <a href="#example-firefly-cpp" title="Examples">💡</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3Afirefly-cpp" title="Reviewed Pull Requests">👀</a> <a href="#question-firefly-cpp" title="Answering Questions">💬</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=firefly-cpp" title="Tests">⚠️</a> <a href="#platform-firefly-cpp" title="Packaging/porting to new platform">📦</a></td> <td align="center"><a href="https://github.com/lucijabrezocnik"><img src="https://avatars2.githubusercontent.com/u/36370699?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Lucija Brezočnik</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=lucijabrezocnik" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=lucijabrezocnik" title="Documentation">📖</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Alucijabrezocnik" title="Bug reports">🐛</a> <a href="#example-lucijabrezocnik" title="Examples">💡</a></td> <td align="center"><a href="https://github.com/mlaky88"><img src="https://avatars1.githubusercontent.com/u/23091578?v=4?s=100" width="100px;" alt=""/><br /><sub><b>mlaky88</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=mlaky88" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=mlaky88" title="Documentation">📖</a> <a href="#example-mlaky88" title="Examples">💡</a></td> <td align="center"><a href="https://github.com/rhododendrom"><img src="https://avatars1.githubusercontent.com/u/3198785?v=4?s=100" width="100px;" alt=""/><br /><sub><b>rhododendrom</b></sub></a><br /><a href="https://github.com/NiaOrg/NiaPy/commits?author=rhododendrom" title="Code">💻</a> <a href="https://github.com/NiaOrg/NiaPy/commits?author=rhododendrom" title="Documentation">📖</a> <a href="#example-rhododendrom" title="Examples">💡</a> <a href="https://github.com/NiaOrg/NiaPy/issues?q=author%3Arhododendrom" title="Bug reports">🐛</a> <a href="https://github.com/NiaOrg/NiaPy/pulls?q=is%3Apr+reviewed-by%3Arhododendrom" title="Reviewed Pull Requests">👀</a></td> <td align="center"><a href="https://github.com/kb2623"><img src="https://avatars3.githubusercontent.com/u/7480221?s=460&v=4?s=100" width="100px;" alt=""/><br /><sub><b>Klemen</b></sub></a><br /><a

免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方 案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号