MOFA-Video

MOFA-Video

可控图像动画图像到视频扩散模型

MOFA-Video项目采用稀疏到稠密运动生成和基于流的运动适配技术,能通过轨迹、关键点序列及其组合等多种控制信号将单张图像转化为动画。最新更新包括关键点面部图像动画的推理脚本和轨迹图像动画的训练代码。该项目即将亮相ECCV 2024,并提供多个演示和检查点,便于用户测试和使用。访问项目页面了解更多详情和效果展示。

MOFA-Video图像动画混合控制ECCV 2024生成模型Github开源项目

It seems that the images you uploaded are of an unsupported file type or corrupted, which is why they can't be displayed or analyzed directly. You might want to try converting them to a supported format like JPEG or PNG, or re-uploading them if they are already in these formats. If you need help with something else or have a different request, feel free to let me know! <SOURCE_TEXT>

<table align="center"> <tr> <td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/a9f15cc9-766c-433c-ab73-f5e136772383.gif" /> <br /> </td> <td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/c98bff73-5337-4bfe-aa3c-f21d0fc3b530.gif" /> <br /> </td> <td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/7c7a7155-4752-4677-a588-eaf4c881cd40.gif" /> <br /> </td> <td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/cb6ef2c7-8131-4424-aa54-72c41b0a9fc5.gif" /> <br /> </td> <td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/c34418ee-75f5-4553-a2ea-ccb853b2b666.gif" /> <br /> </td> <tr> <td colspan="5" align="center" style="border: none;"> Landmark Control </td> </tr> </tr> </table> <div align="center"> 查看我们<a href='https://myniuuu.github.io/MOFA_Video' target='_blank'>项目页面</a>的图库以获取更多视觉效果! </div>

引言

我们介绍了MOFA-Video,这是一种设计用来将不同领域的运动适应到冻结的视频扩散模型的方法。通过使用<u>从稀疏到密集(S2D) 运动生成</u><u>基于流的运动适应</u>,MOFA-Video可以有效地使用各种控制信号(包括轨迹、关键点序列及其组合)来动画化单个图像。

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/e7d75ddb-cdba-4471-bb96-2b7d12632786.png"> </p>

在训练阶段,我们通过稀疏运动采样生成稀疏控制信号,然后训练不同的MOFA-适配器通过预训练的SVD生成视频。在推理阶段,不同的MOFA-适配器可以组合在一起共同控制冻结的SVD。

🕹️ 使用混合控制的图像动画

1. 克隆仓库

git clone https://github.com/MyNiuuu/MOFA-Video.git
cd ./MOFA-Video

2. 环境设置

此演示已在CUDA 11.7版本上测试过。

cd ./MOFA-Video-Hybrid
conda create -n mofa python==3.10
conda activate mofa
pip install -r requirements.txt
pip install opencv-python-headless
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

重要: ⚠️⚠️⚠️ 在requirements.txt中严格遵循 4.5.0 版本的Gradio,因为其他版本可能会导致错误。

3. 下载检查点

  1. 这里下载CMP的检查点并放入 ./MOFA-Video-Hybrid/models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints

  2. 从huggingface仓库下载包含必要预训练检查点的ckpts 文件夹,并将其放在 ./MOFA-Video-Hybrid 下。您可以使用 git lfs 下载整个ckpts文件夹:

    1. https://git-lfs.github.com下载 git lfs。它通常用于从HuggingFace克隆具有大型模型检查点的仓库。
    2. 执行git clone https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid 下载完整的HuggingFace仓库,目前仅包括 ckpts 文件夹。
    3. ckpts 文件夹复制或移动到GitHub仓库。

    注意: 如果您在Linux上遇到 git: 'lfs' is not a git command 错误,您可以尝试 这个解决方案,它在我的情况下效果很好。

    最后,检查点应该组织为 ./MOFA-Video-Hybrid/ckpt_tree.md

4. 运行Gradio演示

用音频动画化面部部分

cd ./MOFA-Video-Hybrid
python run_gradio_audio_driven.py

🪄🪄🪄 Gradio接口如下所示。请参照Gradio界面上的说明进行推理过程!

<td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/7bfb330f-c056-4e8b-95fc-a47e7bb8a9fc.png"/> </td>

使用参考视频动画化面部部分

cd ./MOFA-Video-Hybrid
python run_gradio_video_driven.py

🪄🪄🪄 Gradio接口如下所示。请参照Gradio界面上的说明进行推理过程!

<td align="center"> <img src="https://yellow-cdn.veclightyear.com/35dd4d3f/c6f64d2d-2b37-46c9-bb4b-29787c0d694f.png"/> </td>

💫 基于轨迹的图像动画

请参见这里获取说明。

训练您自己的MOFA-适配器

请参见这里获取更多说明。

引用

@article{niu2024mofa,
  title={MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model},
  author={Niu, Muyao and Cun, Xiaodong and Wang, Xintao and Zhang, Yong and Shan, Ying and Zheng, Yinqiang},
  journal={arXiv preprint arXiv:2405.20222},
  year={2024}
}

致谢

我们诚挚感谢以下项目的代码发布: DragNUWA, SadTalker, AniPortrait, Diffusers, SVD_Xtend, Conditional-Motion-Propagation, 以及 Unimatch. </SOURCE_TEXT>

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多