SyntheticTumors

SyntheticTumors

合成肿瘤数据助力AI提升真实肿瘤分割效果

SyntheticTumors项目开发了创新策略生成合成肝脏肿瘤数据,用于训练AI模型。研究发现,使用合成肿瘤数据训练的模型在真实肿瘤分割任务中表现优于使用真实肿瘤数据训练的模型。项目提供了多个合成肿瘤示例,展示了其与真实肿瘤的视觉相似性。这种方法为医学影像分析和AI辅助诊断提供了新的研究方向。

AI肿瘤分割合成肿瘤深度学习医学影像Github开源项目

合成肿瘤让人工智能更好地分割肿瘤

本仓库提供了大量由我们新颖策略生成的合成肝脏肿瘤示例。看看您能否分辨出哪些是真实肿瘤,哪些是合成肿瘤。更重要的是,我们的合成肿瘤可用于训练人工智能模型,并已被证明在真实肿瘤分割任务中达到了与使用真实肿瘤训练的模型相似(实际上是更好)的性能。

是不是很惊人

<p align="center"><img width="100%" src="https://yellow-cdn.veclightyear.com/0a4dffa0/f0745633-6f3d-40bd-94e7-ded646ed19cf.png" /></p> <p align="center"><img width="100%" src="https://yellow-cdn.veclightyear.com/0a4dffa0/cfac9707-5f0a-4810-ac31-5d8863584a1d.gif" /></p>

论文

<b>无标签肝脏肿瘤分割</b> <br/> 胡启欣<sup>1</sup>陈奕雄<sup>2</sup>肖俊飞<sup>3</sup>,孙书文<sup>4</sup>陈劲能<sup>3</sup>Alan L. Yuille<sup>3</sup>,和周宗伟<sup>3,*</sup> <br/> <sup>1 </sup>华中科技大学, <br/> <sup>2 </sup>香港中文大学(深圳), <br/> <sup>3 </sup>约翰霍普金斯大学, <br/> <sup>4 </sup>南京医科大学第一附属医院 <br/> CVPR,2023 <br/> 论文 | 代码 | 演讲(Alan Yuille) | 演讲 | 幻灯片 | 海报

<b>合成肿瘤让人工智能更好地分割肿瘤</b> <br/> 胡启欣<sup>1</sup>肖俊飞<sup>2</sup>陈奕雄<sup>3</sup>,孙书文<sup>4</sup>陈劲能<sup>2</sup>Alan L. Yuille<sup>2</sup>,和周宗伟<sup>2,*</sup> <br/> <sup>1 </sup>华中科技大学, <br/> <sup>2 </sup>约翰霍普金斯大学,<br/> <sup>3 </sup>香港中文大学(深圳), <br/> <sup>4 </sup>南京医科大学第一附属医院 <br/> Medical Imaging Meets NeurIPS,2022 <br/> 论文 | 代码 | 幻灯片 | 海报 | 演示 | 演讲

<b>通过无标签肿瘤合成实现胰腺癌的早期检测和定位</b> <br/> 李博文<sup>1</sup>周宇程<sup>1</sup>,孙书文<sup>2</sup>,乔华林<sup>3</sup>Alan L. Yuille<sup>1</sup>,和周宗伟<sup>1,*</sup> <br/> <sup>1 </sup>约翰霍普金斯大学,<br/> <sup>2 </sup>南京医科大学第一附属医院, <br/> <sup>3 </sup>Sepax technologies <br/> Big Task Small Data,1001-AI,MICCAI 研讨会,2023 <br/> 论文 | 代码 我们已经在常见问题解答(FAQ)中记录了关于本论文的常见问题。

我们还在[Awesome Synthetic Tumors](https://github.com/MrGiovanni/SyntheticTumors/blob/main/AWESOME.md Awesome)中提供了与肿瘤合成相关的出版物列表。

模型

肿瘤模型预训练?下载
真实unet链接
真实swin_unetrv2_base链接
真实swin_unetrv2_base链接
真实swin_unetrv2_small链接
真实swin_unetrv2_tiny链接
合成unet链接
合成swin_unetrv2_base链接
合成swin_unetrv2_base链接
合成swin_unetrv2_small链接
合成swin_unetrv2_tiny链接

使用以下命令下载所有内容。

wget https://www.dropbox.com/s/jys4tt2ttmr7ig1/runs.tar.gz tar -xzvf runs.tar.gz

0. 安装

git clone https://github.com/MrGiovanni/SyntheticTumors.git cd SyntheticTumors wget https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/model_swinvit.pt

参见安装说明

1. 使用合成肿瘤训练分割模型

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Base(预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json --use_pretrained

# Swin-UNETR-Base(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Small(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Tiny(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

2. 使用真实肿瘤训练分割模型(用于比较)

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --logdir="runs/real.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --logdir="runs/real.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json --use_pretrained

# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12232 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

## 3. 评估

#### 由合成肿瘤训练的AI模型

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.unet --save_dir out

# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.pretrain.swin_unetrv2_base --save_dir out

# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_base --save_dir out

# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_small --save_dir out

# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_tiny --save_dir out

#### 由真实肿瘤训练的AI模型

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.unet --save_dir out
# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_small --save_dir out
# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_tiny --save_dir out

待办事项

  • 将论文上传到arxiv
  • 制作关于视觉图灵测试的视频(将在YouTube上发布)
  • 为视觉图灵测试制作在线应用
  • 申请美国专利
  • 上传小肿瘤评估代码
  • 上传假阳性研究的评估代码
  • 制作肿瘤合成的Jupyter Notebook

引用

@inproceedings{hu2023label,
  title={Label-free liver tumor segmentation},
  author={Hu, Qixin and Chen, Yixiong and Xiao, Junfei and Sun, Shuwen and Chen, Jieneng and Yuille, Alan L and Zhou, Zongwei},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7422--7432},
  year={2023}
}

@article{hu2022synthetic,
  title={Synthetic Tumors Make AI Segment Tumors Better},
  author={Hu, Qixin and Xiao, Junfei and Chen, Yixiong and Sun, Shuwen and Chen, Jie-Neng and Yuille, Alan and Zhou, Zongwei},
  journal={NeurIPS Workshop on Medical Imaging meets NeurIPS},
  year={2022}
}

@article{li2023early,
  title={Early Detection and Localization of Pancreatic Cancer by Label-Free Tumor Synthesis},
  author={Li, Bowen and Chou, Yu-Cheng and Sun, Shuwen and Qiao, Hualin and Yuille, Alan and Zhou, Zongwei},
  journal={arXiv preprint arXiv:2308.03008},
  year={2023}
}

致谢

本研究得到了Lustgarten基金会胰腺癌研究和McGovern基金会的支持。分割骨架基于Swin UNETR;我们感谢MONAI团队为社区提供和维护开源代码的努力。我们感谢Camille Torrico和Alexa Delaney改进了本文的写作。论文内容受待审专利保护。

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
下拉加载更多