SyntheticTumors

SyntheticTumors

合成肿瘤数据助力AI提升真实肿瘤分割效果

SyntheticTumors项目开发了创新策略生成合成肝脏肿瘤数据,用于训练AI模型。研究发现,使用合成肿瘤数据训练的模型在真实肿瘤分割任务中表现优于使用真实肿瘤数据训练的模型。项目提供了多个合成肿瘤示例,展示了其与真实肿瘤的视觉相似性。这种方法为医学影像分析和AI辅助诊断提供了新的研究方向。

AI肿瘤分割合成肿瘤深度学习医学影像Github开源项目

合成肿瘤让人工智能更好地分割肿瘤

本仓库提供了大量由我们新颖策略生成的合成肝脏肿瘤示例。看看您能否分辨出哪些是真实肿瘤,哪些是合成肿瘤。更重要的是,我们的合成肿瘤可用于训练人工智能模型,并已被证明在真实肿瘤分割任务中达到了与使用真实肿瘤训练的模型相似(实际上是更好)的性能。

是不是很惊人

<p align="center"><img width="100%" src="https://yellow-cdn.veclightyear.com/0a4dffa0/f0745633-6f3d-40bd-94e7-ded646ed19cf.png" /></p> <p align="center"><img width="100%" src="https://yellow-cdn.veclightyear.com/0a4dffa0/cfac9707-5f0a-4810-ac31-5d8863584a1d.gif" /></p>

论文

<b>无标签肝脏肿瘤分割</b> <br/> 胡启欣<sup>1</sup>陈奕雄<sup>2</sup>肖俊飞<sup>3</sup>,孙书文<sup>4</sup>陈劲能<sup>3</sup>Alan L. Yuille<sup>3</sup>,和周宗伟<sup>3,*</sup> <br/> <sup>1 </sup>华中科技大学, <br/> <sup>2 </sup>香港中文大学(深圳), <br/> <sup>3 </sup>约翰霍普金斯大学, <br/> <sup>4 </sup>南京医科大学第一附属医院 <br/> CVPR,2023 <br/> 论文 | 代码 | 演讲(Alan Yuille) | 演讲 | 幻灯片 | 海报

<b>合成肿瘤让人工智能更好地分割肿瘤</b> <br/> 胡启欣<sup>1</sup>肖俊飞<sup>2</sup>陈奕雄<sup>3</sup>,孙书文<sup>4</sup>陈劲能<sup>2</sup>Alan L. Yuille<sup>2</sup>,和周宗伟<sup>2,*</sup> <br/> <sup>1 </sup>华中科技大学, <br/> <sup>2 </sup>约翰霍普金斯大学,<br/> <sup>3 </sup>香港中文大学(深圳), <br/> <sup>4 </sup>南京医科大学第一附属医院 <br/> Medical Imaging Meets NeurIPS,2022 <br/> 论文 | 代码 | 幻灯片 | 海报 | 演示 | 演讲

<b>通过无标签肿瘤合成实现胰腺癌的早期检测和定位</b> <br/> 李博文<sup>1</sup>周宇程<sup>1</sup>,孙书文<sup>2</sup>,乔华林<sup>3</sup>Alan L. Yuille<sup>1</sup>,和周宗伟<sup>1,*</sup> <br/> <sup>1 </sup>约翰霍普金斯大学,<br/> <sup>2 </sup>南京医科大学第一附属医院, <br/> <sup>3 </sup>Sepax technologies <br/> Big Task Small Data,1001-AI,MICCAI 研讨会,2023 <br/> 论文 | 代码 我们已经在常见问题解答(FAQ)中记录了关于本论文的常见问题。

我们还在[Awesome Synthetic Tumors](https://github.com/MrGiovanni/SyntheticTumors/blob/main/AWESOME.md Awesome)中提供了与肿瘤合成相关的出版物列表。

模型

肿瘤模型预训练?下载
真实unet链接
真实swin_unetrv2_base链接
真实swin_unetrv2_base链接
真实swin_unetrv2_small链接
真实swin_unetrv2_tiny链接
合成unet链接
合成swin_unetrv2_base链接
合成swin_unetrv2_base链接
合成swin_unetrv2_small链接
合成swin_unetrv2_tiny链接

使用以下命令下载所有内容。

wget https://www.dropbox.com/s/jys4tt2ttmr7ig1/runs.tar.gz tar -xzvf runs.tar.gz

0. 安装

git clone https://github.com/MrGiovanni/SyntheticTumors.git cd SyntheticTumors wget https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/model_swinvit.pt

参见安装说明

1. 使用合成肿瘤训练分割模型

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Base(预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json --use_pretrained

# Swin-UNETR-Base(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Small(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Tiny(无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

2. 使用真实肿瘤训练分割模型(用于比较)

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --logdir="runs/real.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --logdir="runs/real.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json --use_pretrained

# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12232 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --val_overlap=0.5 --max_epochs=4000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

## 3. 评估

#### 由合成肿瘤训练的AI模型

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.unet --save_dir out

# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.pretrain.swin_unetrv2_base --save_dir out

# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_base --save_dir out

# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_small --save_dir out

# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_tiny --save_dir out

#### 由真实肿瘤训练的AI模型

datapath=/mnt/zzhou82/PublicAbdominalData/
# UNET (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.unet --save_dir out
# Swin-UNETR-Base (预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Base (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Small (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_small --save_dir out
# Swin-UNETR-Tiny (无预训练)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_tiny --save_dir out

待办事项

  • 将论文上传到arxiv
  • 制作关于视觉图灵测试的视频(将在YouTube上发布)
  • 为视觉图灵测试制作在线应用
  • 申请美国专利
  • 上传小肿瘤评估代码
  • 上传假阳性研究的评估代码
  • 制作肿瘤合成的Jupyter Notebook

引用

@inproceedings{hu2023label,
  title={Label-free liver tumor segmentation},
  author={Hu, Qixin and Chen, Yixiong and Xiao, Junfei and Sun, Shuwen and Chen, Jieneng and Yuille, Alan L and Zhou, Zongwei},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7422--7432},
  year={2023}
}

@article{hu2022synthetic,
  title={Synthetic Tumors Make AI Segment Tumors Better},
  author={Hu, Qixin and Xiao, Junfei and Chen, Yixiong and Sun, Shuwen and Chen, Jie-Neng and Yuille, Alan and Zhou, Zongwei},
  journal={NeurIPS Workshop on Medical Imaging meets NeurIPS},
  year={2022}
}

@article{li2023early,
  title={Early Detection and Localization of Pancreatic Cancer by Label-Free Tumor Synthesis},
  author={Li, Bowen and Chou, Yu-Cheng and Sun, Shuwen and Qiao, Hualin and Yuille, Alan and Zhou, Zongwei},
  journal={arXiv preprint arXiv:2308.03008},
  year={2023}
}

致谢

本研究得到了Lustgarten基金会胰腺癌研究和McGovern基金会的支持。分割骨架基于Swin UNETR;我们感谢MONAI团队为社区提供和维护开源代码的努力。我们感谢Camille Torrico和Alexa Delaney改进了本文的写作。论文内容受待审专利保护。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多