llamafile

llamafile

单文件执行的开源LLM部署框架

llamafile项目将开源语言模型(LLM)封装为单个可执行文件,无需安装即可在本地运行。它集成了llama.cpp和Cosmopolitan Libc,支持跨平台使用,并提供Web界面和OpenAI兼容API。该框架简化了LLaVA、Mistral等多种LLM的部署流程,方便开发者和用户快速访问和应用这些模型。

llamafileLLM人工智能开源本地运行Github开源项目

llamafile

ci status<br/> <br/><br/>

<img src="llamafile/llamafile-640x640.png" width="320" height="320" alt="[line drawing of llama animal head in front of slightly open manilla folder filled with files]">

llamafile lets you distribute and run LLMs with a single file. (announcement blog post)

Our goal is to make open LLMs much more accessible to both developers and end users. We're doing that by combining llama.cpp with Cosmopolitan Libc into one framework that collapses all the complexity of LLMs down to a single-file executable (called a "llamafile") that runs locally on most computers, with no installation.<br/><br/>

<a href="https://future.mozilla.org"><img src="llamafile/mozilla-logo-bw-rgb.png" width="150"></a><br/> llamafile is a Mozilla Builders project.<br/><br/>

Quickstart

The easiest way to try it for yourself is to download our example llamafile for the LLaVA model (license: LLaMA 2, OpenAI). LLaVA is a new LLM that can do more than just chat; you can also upload images and ask it questions about them. With llamafile, this all happens locally; no data ever leaves your computer.

  1. Download llava-v1.5-7b-q4.llamafile (4.29 GB).

  2. Open your computer's terminal.

  3. If you're using macOS, Linux, or BSD, you'll need to grant permission for your computer to execute this new file. (You only need to do this once.)

chmod +x llava-v1.5-7b-q4.llamafile
  1. If you're on Windows, rename the file by adding ".exe" on the end.

  2. Run the llamafile. e.g.:

./llava-v1.5-7b-q4.llamafile
  1. Your browser should open automatically and display a chat interface. (If it doesn't, just open your browser and point it at http://localhost:8080)

  2. When you're done chatting, return to your terminal and hit Control-C to shut down llamafile.

Having trouble? See the "Gotchas" section below.

JSON API Quickstart

When llamafile is started, in addition to hosting a web UI chat server at http://127.0.0.1:8080/, an OpenAI API compatible chat completions endpoint is provided too. It's designed to support the most common OpenAI API use cases, in a way that runs entirely locally. We've also extended it to include llama.cpp specific features (e.g. mirostat) that may also be used. For further details on what fields and endpoints are available, refer to both the OpenAI documentation and the llamafile server README.

<details> <summary>Curl API Client Example</summary>

The simplest way to get started using the API is to copy and paste the following curl command into your terminal.

curl http://localhost:8080/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer no-key" \ -d '{ "model": "LLaMA_CPP", "messages": [ { "role": "system", "content": "You are LLAMAfile, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests." }, { "role": "user", "content": "Write a limerick about python exceptions" } ] }' | python3 -c ' import json import sys json.dump(json.load(sys.stdin), sys.stdout, indent=2) print() '

The response that's printed should look like the following:

{ "choices" : [ { "finish_reason" : "stop", "index" : 0, "message" : { "content" : "There once was a programmer named Mike\nWho wrote code that would often choke\nHe used try and except\nTo handle each step\nAnd his program ran without any hike.", "role" : "assistant" } } ], "created" : 1704199256, "id" : "chatcmpl-Dt16ugf3vF8btUZj9psG7To5tc4murBU", "model" : "LLaMA_CPP", "object" : "chat.completion", "usage" : { "completion_tokens" : 38, "prompt_tokens" : 78, "total_tokens" : 116 } }
</details> <details> <summary>Python API Client example</summary>

If you've already developed your software using the openai Python package (that's published by OpenAI) then you should be able to port your app to talk to llamafile instead, by making a few changes to base_url and api_key. This example assumes you've run pip3 install openai to install OpenAI's client software, which is required by this example. Their package is just a simple Python wrapper around the OpenAI API interface, which can be implemented by any server.

#!/usr/bin/env python3 from openai import OpenAI client = OpenAI( base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port" api_key = "sk-no-key-required" ) completion = client.chat.completions.create( model="LLaMA_CPP", messages=[ {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."}, {"role": "user", "content": "Write a limerick about python exceptions"} ] ) print(completion.choices[0].message)

The above code will return a Python object like this:

ChatCompletionMessage(content='There once was a programmer named Mike\nWho wrote code that would often strike\nAn error would occur\nAnd he\'d shout "Oh no!"\nBut Python\'s exceptions made it all right.', role='assistant', function_call=None, tool_calls=None)
</details>

Other example llamafiles

We also provide example llamafiles for other models, so you can easily try out llamafile with different kinds of LLMs.

ModelSizeLicensellamafileother quants
LLaVA 1.53.97 GBLLaMA 2llava-v1.5-7b-q4.llamafileSee HF repo
TinyLlama-1.1B2.05 GBApache 2.0TinyLlama-1.1B-Chat-v1.0.F16.llamafileSee HF repo
Mistral-7B-Instruct3.85 GBApache 2.0mistral-7b-instruct-v0.2.Q4_0.llamafileSee HF repo
Phi-3-mini-4k-instruct7.67 GBApache 2.0Phi-3-mini-4k-instruct.F16.llamafileSee HF repo
Mixtral-8x7B-Instruct30.03 GBApache 2.0mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafileSee HF repo
WizardCoder-Python-34B22.23 GBLLaMA 2wizardcoder-python-34b-v1.0.Q5_K_M.llamafileSee HF repo
WizardCoder-Python-13B7.33 GBLLaMA 2wizardcoder-python-13b.llamafileSee HF repo
LLaMA-3-Instruct-70B37.25 GBllama3Meta-Llama-3-70B-Instruct.Q4_0.llamafileSee HF repo
LLaMA-3-Instruct-8B5.37 GBllama3Meta-Llama-3-8B-Instruct.Q5_K_M.llamafileSee HF repo
Rocket-3B1.89 GBcc-by-sa-4.0rocket-3b.Q5_K_M.llamafileSee HF repo
OLMo-7B5.68 GBApache 2.0OLMo-7B-0424.Q6_K.llamafileSee HF repo
Text Embedding Models
E5-Mistral-7B-Instruct5.16 GBMITe5-mistral-7b-instruct-Q5_K_M.llamafileSee HF repo
mxbai-embed-large-v10.7 GBApache 2.0mxbai-embed-large-v1-f16.llamafileSee HF Repo

Here is an example for the Mistral command-line llamafile:

./mistral-7b-instruct-v0.2.Q5_K_M.llamafile --temp 0.7 -p '[INST]Write a story about llamas[/INST]'

And here is an example for WizardCoder-Python command-line llamafile:

./wizardcoder-python-13b.llamafile --temp 0 -e -r '```\n' -p '```c\nvoid *memcpy_sse2(char *dst, const char *src, size_t size) {\n'

And here's an example for the LLaVA command-line llamafile:

./llava-v1.5-7b-q4.llamafile --temp 0.2 --image lemurs.jpg -e -p '### User: What do you see?\n### Assistant:'

As before, macOS, Linux, and BSD users will need to use the "chmod" command to grant execution permissions to the file before running these llamafiles for the first time.

Unfortunately, Windows users cannot make use of many of these example llamafiles because Windows has a maximum executable file size of 4GB, and all of these examples exceed that size. (The LLaVA llamafile works on Windows because it is 30MB shy of the size limit.) But don't lose heart: llamafile allows you to use external weights; this is described later in this document.

Having trouble? See the "Gotchas" section below.

How llamafile works

A llamafile is an executable LLM that you can run on your own computer. It contains the weights for a given open LLM, as well as everything needed to actually run that model on your computer. There's nothing to install or configure (with a few caveats, discussed in subsequent sections of this document).

This is all accomplished by combining llama.cpp with Cosmopolitan Libc, which provides some useful capabilities:

  1. llamafiles can run on multiple CPU

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多