llamafile

llamafile

单文件执行的开源LLM部署框架

llamafile项目将开源语言模型(LLM)封装为单个可执行文件,无需安装即可在本地运行。它集成了llama.cpp和Cosmopolitan Libc,支持跨平台使用,并提供Web界面和OpenAI兼容API。该框架简化了LLaVA、Mistral等多种LLM的部署流程,方便开发者和用户快速访问和应用这些模型。

llamafileLLM人工智能开源本地运行Github开源项目

llamafile

ci status<br/> <br/><br/>

<img src="llamafile/llamafile-640x640.png" width="320" height="320" alt="[line drawing of llama animal head in front of slightly open manilla folder filled with files]">

llamafile lets you distribute and run LLMs with a single file. (announcement blog post)

Our goal is to make open LLMs much more accessible to both developers and end users. We're doing that by combining llama.cpp with Cosmopolitan Libc into one framework that collapses all the complexity of LLMs down to a single-file executable (called a "llamafile") that runs locally on most computers, with no installation.<br/><br/>

<a href="https://future.mozilla.org"><img src="llamafile/mozilla-logo-bw-rgb.png" width="150"></a><br/> llamafile is a Mozilla Builders project.<br/><br/>

Quickstart

The easiest way to try it for yourself is to download our example llamafile for the LLaVA model (license: LLaMA 2, OpenAI). LLaVA is a new LLM that can do more than just chat; you can also upload images and ask it questions about them. With llamafile, this all happens locally; no data ever leaves your computer.

  1. Download llava-v1.5-7b-q4.llamafile (4.29 GB).

  2. Open your computer's terminal.

  3. If you're using macOS, Linux, or BSD, you'll need to grant permission for your computer to execute this new file. (You only need to do this once.)

chmod +x llava-v1.5-7b-q4.llamafile
  1. If you're on Windows, rename the file by adding ".exe" on the end.

  2. Run the llamafile. e.g.:

./llava-v1.5-7b-q4.llamafile
  1. Your browser should open automatically and display a chat interface. (If it doesn't, just open your browser and point it at http://localhost:8080)

  2. When you're done chatting, return to your terminal and hit Control-C to shut down llamafile.

Having trouble? See the "Gotchas" section below.

JSON API Quickstart

When llamafile is started, in addition to hosting a web UI chat server at http://127.0.0.1:8080/, an OpenAI API compatible chat completions endpoint is provided too. It's designed to support the most common OpenAI API use cases, in a way that runs entirely locally. We've also extended it to include llama.cpp specific features (e.g. mirostat) that may also be used. For further details on what fields and endpoints are available, refer to both the OpenAI documentation and the llamafile server README.

<details> <summary>Curl API Client Example</summary>

The simplest way to get started using the API is to copy and paste the following curl command into your terminal.

curl http://localhost:8080/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer no-key" \ -d '{ "model": "LLaMA_CPP", "messages": [ { "role": "system", "content": "You are LLAMAfile, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests." }, { "role": "user", "content": "Write a limerick about python exceptions" } ] }' | python3 -c ' import json import sys json.dump(json.load(sys.stdin), sys.stdout, indent=2) print() '

The response that's printed should look like the following:

{ "choices" : [ { "finish_reason" : "stop", "index" : 0, "message" : { "content" : "There once was a programmer named Mike\nWho wrote code that would often choke\nHe used try and except\nTo handle each step\nAnd his program ran without any hike.", "role" : "assistant" } } ], "created" : 1704199256, "id" : "chatcmpl-Dt16ugf3vF8btUZj9psG7To5tc4murBU", "model" : "LLaMA_CPP", "object" : "chat.completion", "usage" : { "completion_tokens" : 38, "prompt_tokens" : 78, "total_tokens" : 116 } }
</details> <details> <summary>Python API Client example</summary>

If you've already developed your software using the openai Python package (that's published by OpenAI) then you should be able to port your app to talk to llamafile instead, by making a few changes to base_url and api_key. This example assumes you've run pip3 install openai to install OpenAI's client software, which is required by this example. Their package is just a simple Python wrapper around the OpenAI API interface, which can be implemented by any server.

#!/usr/bin/env python3 from openai import OpenAI client = OpenAI( base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port" api_key = "sk-no-key-required" ) completion = client.chat.completions.create( model="LLaMA_CPP", messages=[ {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."}, {"role": "user", "content": "Write a limerick about python exceptions"} ] ) print(completion.choices[0].message)

The above code will return a Python object like this:

ChatCompletionMessage(content='There once was a programmer named Mike\nWho wrote code that would often strike\nAn error would occur\nAnd he\'d shout "Oh no!"\nBut Python\'s exceptions made it all right.', role='assistant', function_call=None, tool_calls=None)
</details>

Other example llamafiles

We also provide example llamafiles for other models, so you can easily try out llamafile with different kinds of LLMs.

ModelSizeLicensellamafileother quants
LLaVA 1.53.97 GBLLaMA 2llava-v1.5-7b-q4.llamafileSee HF repo
TinyLlama-1.1B2.05 GBApache 2.0TinyLlama-1.1B-Chat-v1.0.F16.llamafileSee HF repo
Mistral-7B-Instruct3.85 GBApache 2.0mistral-7b-instruct-v0.2.Q4_0.llamafileSee HF repo
Phi-3-mini-4k-instruct7.67 GBApache 2.0Phi-3-mini-4k-instruct.F16.llamafileSee HF repo
Mixtral-8x7B-Instruct30.03 GBApache 2.0mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafileSee HF repo
WizardCoder-Python-34B22.23 GBLLaMA 2wizardcoder-python-34b-v1.0.Q5_K_M.llamafileSee HF repo
WizardCoder-Python-13B7.33 GBLLaMA 2wizardcoder-python-13b.llamafileSee HF repo
LLaMA-3-Instruct-70B37.25 GBllama3Meta-Llama-3-70B-Instruct.Q4_0.llamafileSee HF repo
LLaMA-3-Instruct-8B5.37 GBllama3Meta-Llama-3-8B-Instruct.Q5_K_M.llamafileSee HF repo
Rocket-3B1.89 GBcc-by-sa-4.0rocket-3b.Q5_K_M.llamafileSee HF repo
OLMo-7B5.68 GBApache 2.0OLMo-7B-0424.Q6_K.llamafileSee HF repo
Text Embedding Models
E5-Mistral-7B-Instruct5.16 GBMITe5-mistral-7b-instruct-Q5_K_M.llamafileSee HF repo
mxbai-embed-large-v10.7 GBApache 2.0mxbai-embed-large-v1-f16.llamafileSee HF Repo

Here is an example for the Mistral command-line llamafile:

./mistral-7b-instruct-v0.2.Q5_K_M.llamafile --temp 0.7 -p '[INST]Write a story about llamas[/INST]'

And here is an example for WizardCoder-Python command-line llamafile:

./wizardcoder-python-13b.llamafile --temp 0 -e -r '```\n' -p '```c\nvoid *memcpy_sse2(char *dst, const char *src, size_t size) {\n'

And here's an example for the LLaVA command-line llamafile:

./llava-v1.5-7b-q4.llamafile --temp 0.2 --image lemurs.jpg -e -p '### User: What do you see?\n### Assistant:'

As before, macOS, Linux, and BSD users will need to use the "chmod" command to grant execution permissions to the file before running these llamafiles for the first time.

Unfortunately, Windows users cannot make use of many of these example llamafiles because Windows has a maximum executable file size of 4GB, and all of these examples exceed that size. (The LLaVA llamafile works on Windows because it is 30MB shy of the size limit.) But don't lose heart: llamafile allows you to use external weights; this is described later in this document.

Having trouble? See the "Gotchas" section below.

How llamafile works

A llamafile is an executable LLM that you can run on your own computer. It contains the weights for a given open LLM, as well as everything needed to actually run that model on your computer. There's nothing to install or configure (with a few caveats, discussed in subsequent sections of this document).

This is all accomplished by combining llama.cpp with Cosmopolitan Libc, which provides some useful capabilities:

  1. llamafiles can run on multiple CPU

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多