UCTransNet

UCTransNet

融合U-Net与Transformer的医学图像分割网络

UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。

UCTransNet医学图像分割深度学习U-NetTransformerGithub开源项目

[AAAI2022] UCTransNet

这个仓库是论文《UCTransNet:从通道角度重新思考U-Net中的跳跃连接与Transformer》的官方实现,该论文已被AAAI2022接收。

框架图

我们提出了一个通道Transformer模块(CTrans),并用它替换原始U-Net中的跳跃连接,因此我们将其命名为"U-CTrans-Net"。

在线演示视频可用于简要介绍。

🔥🔥🔥 UCTransNet的改进版本请参考UDTransNet通过可学习的跳跃连接缩小U-Net的语义差距:以医学图像分割为例),它实现了更高的性能和更低的计算成本。🔥🔥🔥

环境要求

使用以下命令从requirements.txt安装:

pip install -r requirements.txt

使用方法

注意:如果你在使用代码时遇到问题,issues可能会有帮助。

1. 数据准备

1.1. GlaS和MoNuSeg数据集

原始数据可以从以下链接下载:

然后按以下格式准备数据集,以便轻松使用代码:

├── datasets ├── GlaS │ ├── Test_Folder │ │ ├── img │ │ └── labelcol │ ├── Train_Folder │ │ ├── img │ │ └── labelcol │ └── Val_Folder │ ├── img │ └── labelcol └── MoNuSeg ├── Test_Folder │ ├── img │ └── labelcol ├── Train_Folder │ ├── img │ └── labelcol └── Val_Folder ├── img └── labelcol

1.2. Synapse数据集

我们使用的Synapse数据集由TransUNet的作者提供。 详情请参阅https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md

(可选)🔥🔥 使用自定义数据集

  • 如果你想在自定义数据集上实现UCTransNet,最简单的方法是按照上述GlaS的方式组织文件结构。

  • 确保图像为.jpg格式,掩码ID应与图像ID匹配,但扩展名为.png

  • 文件结构或命名约定的任何不一致都可能导致I/O错误。

2. 训练

如论文中提到的,我们引入了两种策略来优化UCTransNet。

第一步是更改Config.py中的设置,所有配置包括学习率、批量大小等都在其中。

2.1 联合训练

我们使用单一损失函数同时优化U-Net中的卷积参数和CTrans参数。 运行:

python train_model.py

2.2 预训练

我们的方法只是替换了U-Net中的跳跃连接,因此U-Net中的参数可以用作预训练权重的一部分。

通过首先使用/nets/UNet.py训练一个经典的U-Net,然后使用预训练权重来训练UCTransNet,CTrans模块可以获得更好的初始特征。 这种策略可以提高收敛速度,在某些情况下可能会改善最终的分割性能。

3. 测试

3.1. 获取预训练模型

在此,我们提供了在GlaS和MoNuSeg数据集上预训练的权重,如果你不想自己训练模型,可以通过以下链接下载:

3.2. 测试模型并可视化分割结果

首先,在Config.py中更改会话名称,与训练阶段相同。 然后运行:

python test_model.py

你可以得到Dice和IoU分数以及可视化结果。

🔥🔥 Synapse数据集中所有类别的测试结果可以通过此链接下载。 🔥🔥

4. 可复现性

在我们的代码中,我们仔细设置了随机种子并将cudnn设置为"确定性"模式以消除随机性。 然而,仍然存在一些可能导致不同训练结果的因素,例如cuda版本、GPU类型、GPU数量等。我们实验中使用的GPU是NVIDIA A40(48G),cuda版本为11.2。

特别是在多GPU情况下,上采样操作在随机性方面存在很大问题。 更多详情请参见https://pytorch.org/docs/stable/notes/randomness.html。

在训练时,我们建议训练模型两次以验证是否消除了随机性。由于我们使用了早停策略,最终性能可能会因随机性而发生显著变化

参考文献

引用

如果此代码对你的研究有帮助,请引用:

@article{UCTransNet,
	 title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer}, 
	 volume={36}, 
	 url={https://ojs.aaai.org/index.php/AAAI/article/view/20144}, 
  	 DOI={10.1609/aaai.v36i3.20144},
	 number={3}, 
	 journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
	 author={Wang, Haonan and Cao, Peng and Wang, Jiaqi and Zaiane, Osmar R.}, 
	 year={2022}, 
	 month={Jun.}, 
	 pages={2441-2449}}

联系方式

Haonan Wang (haonan1wang@gmail.com)

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多