这个仓库是论文《UCTransNet:从通道角度重新思考U-Net中的跳跃连接与Transformer》的官方实现,该论文已被AAAI2022接收。
我们提出了一个通道Transformer模块(CTrans),并用它替换原始U-Net中的跳跃连接,因此我们将其命名为"U-CTrans-Net"。
在线演示视频可用于简要介绍。
🔥🔥🔥 UCTransNet的改进版本请参考UDTransNet(通过可学习的跳跃连接缩小U-Net的语义差距:以医学图像分割为例),它实现了更高的性能和更低的计算成本。🔥🔥🔥
使用以下命令从requirements.txt
安装:
pip install -r requirements.txt
注意:如果你在使用代码时遇到问题,issues可能会有帮助。
原始数据可以从以下链接下载:
然后按以下格式准备数据集,以便轻松使用代码:
├── datasets ├── GlaS │ ├── Test_Folder │ │ ├── img │ │ └── labelcol │ ├── Train_Folder │ │ ├── img │ │ └── labelcol │ └── Val_Folder │ ├── img │ └── labelcol └── MoNuSeg ├── Test_Folder │ ├── img │ └── labelcol ├── Train_Folder │ ├── img │ └── labelcol └── Val_Folder ├── img └── labelcol
我们使用的Synapse数据集由TransUNet的作者提供。 详情请参阅https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md。
如果你想在自定义数据集上实现UCTransNet,最简单的方法是按照上述GlaS的方式组织文件结构。
确保图像为.jpg
格式,掩码ID应与图像ID匹配,但扩展名为.png
。
文件结构或命名约定的任何不一致都可能导致I/O错误。
如论文中提到的,我们引入了两种策略来优化UCTransNet。
第一步是更改Config.py
中的设置,所有配置包括学习率、批量大小等都在其中。
我们使用单一损失函数同时优化U-Net中的卷积参数和CTrans参数。 运行:
python train_model.py
我们的方法只是替换了U-Net中的跳跃连接,因此U-Net中的参数可以用作预训练权重的一部分。
通过首先使用/nets/UNet.py
训练一个经典的U-Net,然后使用预训练权重来训练UCTransNet,CTrans模块可以获得更好的初始特征。
这种策略可以提高收敛速度,在某些情况下可能会改善最终的分割性能。
在此,我们提供了在GlaS和MoNuSeg数据集上预训练的权重,如果你不想自己训练模型,可以通过以下链接下载:
首先,在Config.py
中更改会话名称,与训练阶段相同。
然后运行:
python test_model.py
你可以得到Dice和IoU分数以及可视化结果。
🔥🔥 Synapse数据集中所有类别的测试结果可以通过此链接下载。 🔥🔥
在我们的代码中,我们仔细设置了随机种子并将cudnn设置为"确定性"模式以消除随机性。 然而,仍然存在一些可能导致不同训练结果的因素,例如cuda版本、GPU类型、GPU数量等。我们实验中使用的GPU是NVIDIA A40(48G),cuda版本为11.2。
特别是在多GPU情况下,上采样操作在随机性方面存在很大问题。 更多详情请参见https://pytorch.org/docs/stable/notes/randomness.html。
在训练时,我们建议训练模型两次以验证是否消除了随机性。由于我们使用了早停策略,最终性能可能会因随机性而发生显著变化。
如果此代码对你的研究有帮助,请引用:
@article{UCTransNet,
title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer},
volume={36},
url={https://ojs.aaai.org/index.php/AAAI/article/view/20144},
DOI={10.1609/aaai.v36i3.20144},
number={3},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Wang, Haonan and Cao, Peng and Wang, Jiaqi and Zaiane, Osmar R.},
year={2022},
month={Jun.},
pages={2441-2449}}
Haonan Wang (haonan1wang@gmail.com)
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号