InstantID

InstantID

使用单张图像秒级生成保持身份特征的逼真人像

InstantID是一个开源项目,提供创新的身份保持生成技术。该技术只需一张图像就能快速生成保持身份特征的高质量人像。项目包含训练代码和推理脚本,支持在自定义数据集上复现原作者的预训练模型效果。InstantID适用于多种下游任务,为AI图像生成领域提供了新的可能性。

InstantIDAI图像生成身份保持人脸识别图像处理Github开源项目

InstantID

<a href='https://instantid.github.io/'><img src='https://img.shields.io/badge/Project-Page-green'></a> <a href='https://arxiv.org/abs/2401.07519'><img src='https://img.shields.io/badge/Technique-Report-red'></a> <a href='https://huggingface.co/papers/2401.07519'><img src='https://img.shields.io/static/v1?label=Paper&message=Huggingface&color=orange'></a> <a href='https://huggingface.co/spaces/InstantX/InstantID'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>

InstantID:秒级零样本身份保持生成

InstantID 是一种出色的免调整方法,专为仅使用单张图像进行身份保持生成而设计。该方法支持多种下游任务,在该领域树立了新的标准。

本仓库是一个非官方实现,fork 自原始的 InstantID 仓库(https://github.com/InstantID/InstantID )。它包含了原始实现中未包含的额外训练代码。

我们衷心感谢"InstantID:秒级零样本身份保持生成"的创作者将其创新成果公开。在本仓库中,我们开发了训练代码,并在我们自己的专有数据集上进行训练后,成功复现了原作者预训练模型所展示的结果。

演示

为了训练我们的模型,我们使用 train_instantId_sdxl.sh 脚本。该脚本配置为高效处理我们指定的私有数据集上的训练过程。

对于推理,我们使用 infer_from_pkl.py 脚本。该脚本允许我们使用训练好的模型执行推理操作。在处理之前,使用 get_face_info.py 脚本调用 FaceAnalysis,将相关的面部信息存储在 PKL 文件中。

通过遵循这个过程,我们可以在私有数据集上展示训练和官方推理脚本的有效性,从而获得令人印象深刻的结果。

示例图片

下载

你可以直接从 Huggingface 下载模型。 你也可以在 Python 脚本中下载模型:

from huggingface_hub import hf_hub_download hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints") hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

如果你无法访问 Huggingface,可以使用 hf-mirror 下载模型。

export HF_ENDPOINT=https://hf-mirror.com huggingface-cli download --resume-download InstantX/InstantID --local-dir checkpoints

对于人脸编码器,你需要通过此 URL 手动下载到 models/antelopev2,因为默认链接无效。准备好所有模型后,文件夹结构应如下所示:

  .
  ├── models
  ├── checkpoints
  ├── ip_adapter
  ├── pipeline_stable_diffusion_xl_instantid.py
  └── README.md

使用方法

# !pip install opencv-python transformers accelerate insightface import diffusers from diffusers.utils import load_image from diffusers.models import ControlNetModel import cv2 import torch import numpy as np from PIL import Image from insightface.app import FaceAnalysis from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps # 准备 'antelopev2',位于 ./models 下 app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) # 准备模型,位于 ./checkpoints 下 face_adapter = f'./checkpoints/ip-adapter.bin' controlnet_path = f'./checkpoints/ControlNetModel' # 加载 IdentityNet controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 ... ) pipe.cuda() # 加载适配器 pipe.load_ip_adapter_instantid(face_adapter)

然后,你可以自定义你自己的人脸图像

# 加载图像 image = load_image("your-example.jpg") # 准备人脸嵌入 face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # 只使用最大的人脸 face_emb = face_info['embedding'] face_kps = draw_kps(face_image, face_info['kps']) pipe.set_ip_adapter_scale(0.8) prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured" # 生成图像 image = pipe( ... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8 ... ).images[0]

使用技巧

  1. 如果你对相似度不满意,可以增加 controlnet_conditioning_scale (IdentityNet) 和 ip_adapter_scale (Adapter) 的权重。
  2. 如果生成的图像过饱和,减少 ip_adapter_scale。如果不起作用,减少 controlnet_conditioning_scale。
  3. 如果文本控制不如预期,减少 ip_adapter_scale。
  4. 好的基础模型总是能带来不同。

免责声明

本项目根据 Apache 许可证 发布,旨在对 AI 驱动的图像生成领域产生积极影响。用户可以自由使用此工具创建图像,但有义务遵守当地法律并负责任地使用。开发者不会对用户可能的滥用承担任何责任。

主要贡献者

chenxinhua: chenxinhua1002@163.com

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多