视频自监督学习的高效模 型
VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。
视频MAE(VideoMAE)是一个在Kinetics-400数据集上通过自监督方式预训练了1600个epoch的视频模型。它由Tong等人在他们的论文《VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training》中首次提出,并在这个GitHub库中发布。
视频MAE是在图像掩码自编码器(Masked Autoencoders, MAE)基础上扩展到视频领域的一个模型。其结构类似于标准的视觉转换器(Vision Transformer, ViT),顶部叠加了一个解码器,用于预测被掩盖视频片段的像素值。
在模型中,视频被分解为固定大小的片段(分辨率16x16),然后进行线性嵌入。在序列开始处添加一个[CLS]标记,以便进行分类任务。还会在传递给变压器编码器的序列之前增加固定的正弦/余弦位置嵌入。
通过预训练,模型学习到视频的内部表示,可以用于下游任务中特征的提取。例如,用户可以在有标签的视频数据集上,通过在预训练的编码器顶部放置一个线性层,进行标准分类器的训练。一般情况下,线性层放置在[CLS]标记上,因为该标记的最终隐藏状态可以被视为整个视频的表示。
视频MAE的大型模型主要用于下游任务的微调,虽然本身可以用于预测被掩盖视频片段的像素值。可访问模型中心查看在相关任务中已微调的版本。
以下是如何用该模型预测随机掩盖的片段的像素值的示例:
from transformers import VideoMAEImageProcessor, VideoMAEForPreTraining import numpy as np import torch num_frames = 16 video = list(np.random.randn(16, 3, 224, 224)) processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-large") model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-large") pixel_values = processor(video, return_tensors="pt").pixel_values num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) loss = outputs.loss
更多代码示例请参考文档。
相关信息待更新。
相关信息待更新。
相关信息待更新。
相关信息待更新。
若要引用此项目,请参考以下BibTeX条目:
misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号