videomae-large

videomae-large

视频自监督学习的高效模型

VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。

自监督Github视频预训练开源项目VideoMAEHuggingface视频分类模型

视频MAE大型模型项目介绍

视频MAE(VideoMAE)是一个在Kinetics-400数据集上通过自监督方式预训练了1600个epoch的视频模型。它由Tong等人在他们的论文《VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training》中首次提出,并在这个GitHub库中发布。

模型描述

视频MAE是在图像掩码自编码器(Masked Autoencoders, MAE)基础上扩展到视频领域的一个模型。其结构类似于标准的视觉转换器(Vision Transformer, ViT),顶部叠加了一个解码器,用于预测被掩盖视频片段的像素值。

在模型中,视频被分解为固定大小的片段(分辨率16x16),然后进行线性嵌入。在序列开始处添加一个[CLS]标记,以便进行分类任务。还会在传递给变压器编码器的序列之前增加固定的正弦/余弦位置嵌入。

通过预训练,模型学习到视频的内部表示,可以用于下游任务中特征的提取。例如,用户可以在有标签的视频数据集上,通过在预训练的编码器顶部放置一个线性层,进行标准分类器的训练。一般情况下,线性层放置在[CLS]标记上,因为该标记的最终隐藏状态可以被视为整个视频的表示。

预期用途与限制

视频MAE的大型模型主要用于下游任务的微调,虽然本身可以用于预测被掩盖视频片段的像素值。可访问模型中心查看在相关任务中已微调的版本。

使用方法

以下是如何用该模型预测随机掩盖的片段的像素值的示例:

from transformers import VideoMAEImageProcessor, VideoMAEForPreTraining import numpy as np import torch num_frames = 16 video = list(np.random.randn(16, 3, 224, 224)) processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-large") model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-large") pixel_values = processor(video, return_tensors="pt").pixel_values num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) loss = outputs.loss

更多代码示例请参考文档

训练数据

相关信息待更新。

训练过程

预处理

相关信息待更新。

预训练

相关信息待更新。

评估结果

相关信息待更新。

参考文献与引用信息

若要引用此项目,请参考以下BibTeX条目:

misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多