Awesome-GNN4TS

Awesome-GNN4TS

时间序列分析中图神经网络的研究进展与应用

本项目汇集图神经网络(GNN)在时间序列分析领域的研究进展和资源,涵盖预测、分类、异常检测和插值等任务。内容包括相关论文、数据集和应用概述,以及面向任务和模型的GNN4TS分类方法,为该领域研究和应用提供参考。

GNN时间序列分析图神经网络机器学习深度学习Github开源项目
<div align="center"> <!-- <h1><b> BasicTS </b></h1> --> <!-- <h2><b> BasicTS </b></h2> --> <h2><b> Awesome Graph Neural Networks for Time Series Analysis (GNN4TS) </b></h2> </div> <div align="center">

Awesome License: MIT

</div> <div align="center">

[<a href="https://arxiv.org/abs/2307.03759">Paper Page</a>] [<a href="https://mp.weixin.qq.com/s/_G2WieJPrWcaK8aegXObUA">中文解读1</a>] [<a href="https://mp.weixin.qq.com/s/ZsSj6C_uJd2dqmynXcrOSA">中文解读2</a>] [<a href="https://zhuanlan.zhihu.com/p/643249754">中文解读3</a>] [<a href="https://mp.weixin.qq.com/s?__biz=Mzk0NDE5Nzg1Ng==&mid=2247507893&idx=1&sn=99ef8465c09cbcd3346d2d4019f7b3b5&chksm=c32ac63af45d4f2c1141d31923252ca6bbff123564c9424d452f046ab98854a3219dbd08d01d#rd">中文解读4</a>]

</div> <p align="center"> <img src="./assets/gnn4ts.png" width="350"> </p>

🔥 Abundant resources related to GNNs for time series analysis (GNN4TS) by Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I. Webb, Irwin King, Shirui Pan

🙋 Please let us know if you find out a mistake or have any suggestions!

🌟 If you find this resource helpful, please consider to star this repository and cite our survey paper:

@article{jin2024gnn4ts,
  title={A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection},
  author={Jin, Ming and Koh, Huan Yee and Wen, Qingsong and Zambon, Daniele and Alippi, Cesare and Webb, Geoffrey I and King, Irwin and Pan, Shirui},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year={2024}
}

Time series analysis is a fundamental task in many real-world applications, such as finance, healthcare, and transportation. Recently, graph neural networks (GNNs) have been widely used in time series analysis. This repository aims to collect the resources related to GNNs for time series analysis (GNN4TS).

时间序列分析是许多现实应用场景中的一项基本任务,例如对金融、医疗、和交通运输数据的分析与建模。近年来,图神经网络(GNN)已广泛应用于时间序列分析。本项目旨在收集整理与时间序列分析相关图神经网络(GNN4TS)的资源。

<p align="center"> <img src="./assets/taxonomy.png" width="1200"> </p>

We provide two taxonomies for GNN4TS. The first taxonomy (left) is task-oriented and the second taxonomy (right) is model-oriented. The task-oriented taxonomy is based on the tasks that GNNs are used for in time series analysis. The model-oriented taxonomy is based on the types of GNNs used in time series analysis.

针对GNN4TS的大框架,我们提出了两种分类法:其一(左)是面向任务的,其次(右)是面向模型的。第一种分类法基于GNN在时间序列分析中施展的具体任务进行划分,第二种分类法则基于时间序列分析中GNN的类型与设计进行归纳。

✨ News

  • [2024-08-09] 🔥 Our survey was accepted by IEEE TPAMI (IF 20.8). 🎉
  • [2023-08-09] 📮 Our updated version (ver. 10 Aug) of the survey is released [paper link]
  • [2023-07-07] 📮 Our GNN4TS survey (ver. 11 Jul) is made available on arXiv [paper link]
  • [2023-06-19] 📮 We have released this repository that collects the resources related to GNNs for time series analysis (GNN4TS). We will keep updating this repository, and welcome to STAR🌟 and WATCH to keep track of it.

🔭 Table of Contents

📚 Collection of Papers

GNNs for Time Series Forecasting (GNN4TSF)

  • Diffusion convolutional recurrent neural network: Data-driven traffic forecasting (ICLR, 2018) [paper]
  • Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting (IJCAI, 2018) [paper]
  • Urban traffic prediction from spatio-temporal data using deep meta learning (KDD, 2019) [paper]
  • Autoregressive Models for Sequences of Graphs (IEEE IJCNN, 2019) [paper]
  • ST-UNet: A Spatio-Temporal U-Network forGraph-structured Time Series Modeling (arXiv, 2019) [paper]
  • Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting (AAAI, 2019) [paper]
  • Graph Attention Recurrent Neural Networks for Correlated Time Series Forecasting (MileTS, 2019) [paper]
  • Attention Based Spatial-Temporal Graph Convolutional Networksfor Traffic Flow Forecasting (AAAI, 2019) [paper]
  • Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting (AAAI, 2019) [paper]
  • Graph wavenet for deep spatial-temporal graph modeling (IJCAI, 2019) [paper]
  • STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting (IJCAI, 2019) [paper]
  • Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting (AAAI, 2020) [paper]
  • Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks (KDD, 2020) [paper]
  • Traffic Flow Prediction via Spatial Temporal Graph Neural Network (WWW, 2020) [paper]
  • Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems (WWW, 2020) [paper]
  • GMAN: A Graph Multi-Attention Network for Traffic Prediction (AAAI, 2020) [paper]
  • Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting (AAAI, 2020) [paper]
  • Spatio-Temporal Graph Structure Learning for Traffic Forecasting (AAAI, 2020) [paper]
  • Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting (NeurIPS, 2020) [paper]
  • Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting (NeurIPS, 2020) [paper]
  • GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification (IJCAI, 2020) [paper]
  • LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks (IJCAI, 2020) [paper]
  • ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road Speed (CIKM, 2020) [paper]
  • Spatiotemporal Hypergraph Convolution Network for Stock Movement Forecasting (ICDM, 2020) [paper]
  • Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data (ECAI, 2020) [paper]
  • Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction (ECCV, 2020) [paper]
  • Discrete Graph Structure Learning for Forecasting Multiple Time Series (ICLR, 2021) [paper]
  • MTHetGNN: A heterogeneous graph embedding framework for multivariate time series forecasting (Pattern Recognition, 2021) [paper]
  • Graph Edit Networks (ICLR, 2021) [paper]
  • Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting (ICML, 2021) [paper]
  • Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting (KDD, 2021) [paper]
  • Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting (AAAI, 2021) [paper]
  • Hierarchical Graph Convolution Network for Traffic Forecasting (AAAI, 2021) [paper]
  • Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network (AAAI, 2021) [paper]
  • TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning (IJCAI, 2021) [paper]
  • DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting (ICML, 2022) [paper]
  • Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks (NeurIPS, 2022) [paper]
  • Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities (CIKM, 2022) [paper]
  • Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs (IEEE TKDE, 2022) [paper]
  • Graph Neural Controlled Differential Equations for Traffic Forecasting (AAAI, 2022) [paper]
  • CausalGNN: Causal-Based Graph Neural Networks for Spatio-Temporal Epidemic Forecasting (AAAI, 2022) [paper]
  • Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search (ACM TKDD, 2022) [paper]
  • TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting (ICLR, 2022) [paper]
  • Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Mining Spatio-Temporal Relations via Self-Paced Graph Contrastive Learning (KDD, 2022) [paper]
  • Regularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting (IJCAI, 2022) [paper]
  • Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention (IJCAI, 2022) [paper]
  • FOGS: First-Order Gradient Supervision with Learning-based Graph for Traffc Flow Forecasting (IJCAI, 2022) [paper]
  • METRO: A Generic Graph Neural Network Framework for Multivariate Time Series Forecasting (VLDB, 2022) [paper]
  • Scalable Spatiotemporal Graph Neural Networks (AAAI, 2023) [paper]
  • Graph State-Space Models (arXiv,

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多