Awesome-GNN4TS

Awesome-GNN4TS

时间序列分析中图神经网络的研究进展与应用

本项目汇集图神经网络(GNN)在时间序列分析领域的研究进展和资源,涵盖预测、分类、异常检测和插值等任务。内容包括相关论文、数据集和应用概述,以及面向任务和模型的GNN4TS分类方法,为该领域研究和应用提供参考。

GNN时间序列分析图神经网络机器学习深度学习Github开源项目
<div align="center"> <!-- <h1><b> BasicTS </b></h1> --> <!-- <h2><b> BasicTS </b></h2> --> <h2><b> Awesome Graph Neural Networks for Time Series Analysis (GNN4TS) </b></h2> </div> <div align="center">

Awesome License: MIT

</div> <div align="center">

[<a href="https://arxiv.org/abs/2307.03759">Paper Page</a>] [<a href="https://mp.weixin.qq.com/s/_G2WieJPrWcaK8aegXObUA">中文解读1</a>] [<a href="https://mp.weixin.qq.com/s/ZsSj6C_uJd2dqmynXcrOSA">中文解读2</a>] [<a href="https://zhuanlan.zhihu.com/p/643249754">中文解读3</a>] [<a href="https://mp.weixin.qq.com/s?__biz=Mzk0NDE5Nzg1Ng==&mid=2247507893&idx=1&sn=99ef8465c09cbcd3346d2d4019f7b3b5&chksm=c32ac63af45d4f2c1141d31923252ca6bbff123564c9424d452f046ab98854a3219dbd08d01d#rd">中文解读4</a>]

</div> <p align="center"> <img src="./assets/gnn4ts.png" width="350"> </p>

🔥 Abundant resources related to GNNs for time series analysis (GNN4TS) by Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I. Webb, Irwin King, Shirui Pan

🙋 Please let us know if you find out a mistake or have any suggestions!

🌟 If you find this resource helpful, please consider to star this repository and cite our survey paper:

@article{jin2024gnn4ts,
  title={A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection},
  author={Jin, Ming and Koh, Huan Yee and Wen, Qingsong and Zambon, Daniele and Alippi, Cesare and Webb, Geoffrey I and King, Irwin and Pan, Shirui},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year={2024}
}

Time series analysis is a fundamental task in many real-world applications, such as finance, healthcare, and transportation. Recently, graph neural networks (GNNs) have been widely used in time series analysis. This repository aims to collect the resources related to GNNs for time series analysis (GNN4TS).

时间序列分析是许多现实应用场景中的一项基本任务,例如对金融、医疗、和交通运输数据的分析与建模。近年来,图神经网络(GNN)已广泛应用于时间序列分析。本项目旨在收集整理与时间序列分析相关图神经网络(GNN4TS)的资源。

<p align="center"> <img src="./assets/taxonomy.png" width="1200"> </p>

We provide two taxonomies for GNN4TS. The first taxonomy (left) is task-oriented and the second taxonomy (right) is model-oriented. The task-oriented taxonomy is based on the tasks that GNNs are used for in time series analysis. The model-oriented taxonomy is based on the types of GNNs used in time series analysis.

针对GNN4TS的大框架,我们提出了两种分类法:其一(左)是面向任务的,其次(右)是面向模型的。第一种分类法基于GNN在时间序列分析中施展的具体任务进行划分,第二种分类法则基于时间序列分析中GNN的类型与设计进行归纳。

✨ News

  • [2024-08-09] 🔥 Our survey was accepted by IEEE TPAMI (IF 20.8). 🎉
  • [2023-08-09] 📮 Our updated version (ver. 10 Aug) of the survey is released [paper link]
  • [2023-07-07] 📮 Our GNN4TS survey (ver. 11 Jul) is made available on arXiv [paper link]
  • [2023-06-19] 📮 We have released this repository that collects the resources related to GNNs for time series analysis (GNN4TS). We will keep updating this repository, and welcome to STAR🌟 and WATCH to keep track of it.

🔭 Table of Contents

📚 Collection of Papers

GNNs for Time Series Forecasting (GNN4TSF)

  • Diffusion convolutional recurrent neural network: Data-driven traffic forecasting (ICLR, 2018) [paper]
  • Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting (IJCAI, 2018) [paper]
  • Urban traffic prediction from spatio-temporal data using deep meta learning (KDD, 2019) [paper]
  • Autoregressive Models for Sequences of Graphs (IEEE IJCNN, 2019) [paper]
  • ST-UNet: A Spatio-Temporal U-Network forGraph-structured Time Series Modeling (arXiv, 2019) [paper]
  • Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting (AAAI, 2019) [paper]
  • Graph Attention Recurrent Neural Networks for Correlated Time Series Forecasting (MileTS, 2019) [paper]
  • Attention Based Spatial-Temporal Graph Convolutional Networksfor Traffic Flow Forecasting (AAAI, 2019) [paper]
  • Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting (AAAI, 2019) [paper]
  • Graph wavenet for deep spatial-temporal graph modeling (IJCAI, 2019) [paper]
  • STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting (IJCAI, 2019) [paper]
  • Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting (AAAI, 2020) [paper]
  • Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks (KDD, 2020) [paper]
  • Traffic Flow Prediction via Spatial Temporal Graph Neural Network (WWW, 2020) [paper]
  • Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems (WWW, 2020) [paper]
  • GMAN: A Graph Multi-Attention Network for Traffic Prediction (AAAI, 2020) [paper]
  • Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting (AAAI, 2020) [paper]
  • Spatio-Temporal Graph Structure Learning for Traffic Forecasting (AAAI, 2020) [paper]
  • Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting (NeurIPS, 2020) [paper]
  • Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting (NeurIPS, 2020) [paper]
  • GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification (IJCAI, 2020) [paper]
  • LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks (IJCAI, 2020) [paper]
  • ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road Speed (CIKM, 2020) [paper]
  • Spatiotemporal Hypergraph Convolution Network for Stock Movement Forecasting (ICDM, 2020) [paper]
  • Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data (ECAI, 2020) [paper]
  • Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction (ECCV, 2020) [paper]
  • Discrete Graph Structure Learning for Forecasting Multiple Time Series (ICLR, 2021) [paper]
  • MTHetGNN: A heterogeneous graph embedding framework for multivariate time series forecasting (Pattern Recognition, 2021) [paper]
  • Graph Edit Networks (ICLR, 2021) [paper]
  • Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting (ICML, 2021) [paper]
  • Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting (KDD, 2021) [paper]
  • Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting (AAAI, 2021) [paper]
  • Hierarchical Graph Convolution Network for Traffic Forecasting (AAAI, 2021) [paper]
  • Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network (AAAI, 2021) [paper]
  • TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning (IJCAI, 2021) [paper]
  • DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting (ICML, 2022) [paper]
  • Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks (NeurIPS, 2022) [paper]
  • Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities (CIKM, 2022) [paper]
  • Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs (IEEE TKDE, 2022) [paper]
  • Graph Neural Controlled Differential Equations for Traffic Forecasting (AAAI, 2022) [paper]
  • CausalGNN: Causal-Based Graph Neural Networks for Spatio-Temporal Epidemic Forecasting (AAAI, 2022) [paper]
  • Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search (ACM TKDD, 2022) [paper]
  • TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting (ICLR, 2022) [paper]
  • Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Mining Spatio-Temporal Relations via Self-Paced Graph Contrastive Learning (KDD, 2022) [paper]
  • Regularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting (IJCAI, 2022) [paper]
  • Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention (IJCAI, 2022) [paper]
  • FOGS: First-Order Gradient Supervision with Learning-based Graph for Traffc Flow Forecasting (IJCAI, 2022) [paper]
  • METRO: A Generic Graph Neural Network Framework for Multivariate Time Series Forecasting (VLDB, 2022) [paper]
  • Scalable Spatiotemporal Graph Neural Networks (AAAI, 2023) [paper]
  • Graph State-Space Models (arXiv,

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多