@inproceedings{jiaqigu2021L2ight,
title = {L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
author = {Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
<h3><p align="center">Fast, Scalable, Easy Customization, Support Hardware-Aware Cross-Layer Co-Design</p></h3>
<p align="center">
<a href="https://github.com/JeremieMelo/pytorch-onn/blob/release/LICENSEE">
<img alt="MIT License" src="https://img.shields.io/apm/l/atomic-design-ui.svg?">
</a>
</p>
<br />
Integrated neuromorphic photonics simulation framework based on PyTorch. It supports coherent and incoherent optical neural networks (ONNs) training/inference on GPUs. It can scale up to million-parameter ONNs with efficient implementation.
Researchers on neuromorphic photonics, optical AI system design, photonic integrated circuit optimization, ONN training/inference.
CUDA-backed fast GPU support, optimized highly-parallel tensorized processing, versatile APIs for device/circuit/architecture/algorithm co-optimization
git clone https://github.com/JeremieMelo/pytorch-onn.git
cd pytorch-onn python3 setup.py install --user clean
or
./setup.sh
Construct optical NN models as simple as constructing a normal pytorch model.
import torch.nn as nn import torch.nn.functional as F import torchonn as onn from torchonn.models import ONNBaseModel class ONNModel(ONNBaseModel): def __init__(self, device=torch.device("cuda:0)): super().__init__(device=device) self.conv = onn.layers.MZIBlockConv2d( in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1, dilation=1, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.pool = nn.AdaptiveAvgPool2d(5) self.linear = onn.layers.MZIBlockLinear( in_features=8*5*5, out_features=10, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.conv.reset_parameters() self.linear.reset_parameters() def forward(self, x): x = torch.relu(self.conv(x)) x = self.pool(x) x = x.flatten(1) x = self.linear(x) return x
weight, usv, phase modes and their conversion.python3 unitest/test_op.py
, and check the runtime comparison.fft, hadamard, zero_bias, and trainable modes.| File | Description |
|---|---|
| torchonn/ | Library source files with model, layer, and device definition |
| torchonn/op | Basic operators and CUDA-accelerated operators |
| torchonn/layers | Optical device-implemented layers |
| torchonn/models | Base ONN model templete |
| torchonn/devices | Optical device parameters and configurations |
| examples/ | ONN model building and training examples |
| examples/configs | YAML-based configuration files |
| examples/core | ONN model definition and training utility |
| example/train.py | training script |
The examples/ folder contains more examples to train the ONN
models.
An example optical convolutional neural network MZI_CLASS_CNN is defined in examples/core/models/mzi_cnn.py.
Training facilities, e.g., optimizer, critetion, lr_scheduler, models are built in examples/core/builder.py.
The training and validation logic is defined in examples/train.py.
All training hyperparameters are hierarchically defined in the yaml configuration file examples/configs/mnist/mzi_onn/train.yml (The final config is the union of all default.yml from higher-level directories and this specific train.yml ).
By running the following commands,
# train the example MZI-based CNN model with 2 64-channel Conv layers and 1 Linear layer # training will happend in usv mode to optimize U, Sigma, and V* # projected gradient descent will be applied to guarantee the orthogonality of U and V* # the final step will convert unitary matrices into MZI phases and evaluate in the phase mode cd examples python3 train.py configs/mnist/mzi_cnn/train.yml # [followed by any command-line arguments that override the values in config file, e.g., --optimizer.lr=0.001]
Detailed documentations coming soon.
Jiaqi Gu (jqgu@utexas.edu)
Neural operator-enabled fast photonic device simulation: See NeurOLight, NeurIPS 2022.
Automatic photonic tensor core design: See ADEPT, DAC 2022.
Endurance-enhanced photonic in-memory computing: See ELight, ASP-DAC 2022.
Scalable ONN on-chip learning: See L2ight, NeurIPS 2021.
Memory-efficient ONN architecture: See Memory-Efficient-ONN, ICCV 2021.
SqueezeLight: Scalable ONNs with Multi-Operand Ring Resonators: See SqueezeLight, DATE 2021.


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号