@inproceedings{jiaqigu2021L2ight,
title = {L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
author = {Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
<h3><p align="center">Fast, Scalable, Easy Customization, Support Hardware-Aware Cross-Layer Co-Design</p></h3>
<p align="center">
<a href="https://github.com/JeremieMelo/pytorch-onn/blob/release/LICENSEE">
<img alt="MIT License" src="https://img.shields.io/apm/l/atomic-design-ui.svg?">
</a>
</p>
<br />
Integrated neuromorphic photonics simulation framework based on PyTorch. It supports coherent and incoherent optical neural networks (ONNs) training/inference on GPUs. It can scale up to million-parameter ONNs with efficient implementation.
Researchers on neuromorphic photonics, optical AI system design, photonic integrated circuit optimization, ONN training/inference.
CUDA-backed fast GPU support, optimized highly-parallel tensorized processing, versatile APIs for device/circuit/architecture/algorithm co-optimization
git clone https://github.com/JeremieMelo/pytorch-onn.git
cd pytorch-onn python3 setup.py install --user clean
or
./setup.sh
Construct optical NN models as simple as constructing a normal pytorch model.
import torch.nn as nn import torch.nn.functional as F import torchonn as onn from torchonn.models import ONNBaseModel class ONNModel(ONNBaseModel): def __init__(self, device=torch.device("cuda:0)): super().__init__(device=device) self.conv = onn.layers.MZIBlockConv2d( in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1, dilation=1, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.pool = nn.AdaptiveAvgPool2d(5) self.linear = onn.layers.MZIBlockLinear( in_features=8*5*5, out_features=10, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.conv.reset_parameters() self.linear.reset_parameters() def forward(self, x): x = torch.relu(self.conv(x)) x = self.pool(x) x = x.flatten(1) x = self.linear(x) return x
weight, usv, phase modes and their conversion.python3 unitest/test_op.py
, and check the runtime comparison.fft, hadamard, zero_bias, and trainable modes.| File | Description |
|---|---|
| torchonn/ | Library source files with model, layer, and device definition |
| torchonn/op | Basic operators and CUDA-accelerated operators |
| torchonn/layers | Optical device-implemented layers |
| torchonn/models | Base ONN model templete |
| torchonn/devices | Optical device parameters and configurations |
| examples/ | ONN model building and training examples |
| examples/configs | YAML-based configuration files |
| examples/core | ONN model definition and training utility |
| example/train.py | training script |
The examples/ folder contains more examples to train the ONN
models.
An example optical convolutional neural network MZI_CLASS_CNN is defined in examples/core/models/mzi_cnn.py.
Training facilities, e.g., optimizer, critetion, lr_scheduler, models are built in examples/core/builder.py.
The training and validation logic is defined in examples/train.py.
All training hyperparameters are hierarchically defined in the yaml configuration file examples/configs/mnist/mzi_onn/train.yml (The final config is the union of all default.yml from higher-level directories and this specific train.yml ).
By running the following commands,
# train the example MZI-based CNN model with 2 64-channel Conv layers and 1 Linear layer # training will happend in usv mode to optimize U, Sigma, and V* # projected gradient descent will be applied to guarantee the orthogonality of U and V* # the final step will convert unitary matrices into MZI phases and evaluate in the phase mode cd examples python3 train.py configs/mnist/mzi_cnn/train.yml # [followed by any command-line arguments that override the values in config file, e.g., --optimizer.lr=0.001]
Detailed documentations coming soon.
Jiaqi Gu (jqgu@utexas.edu)
Neural operator-enabled fast photonic device simulation: See NeurOLight, NeurIPS 2022.
Automatic photonic tensor core design: See ADEPT, DAC 2022.
Endurance-enhanced photonic in-memory computing: See ELight, ASP-DAC 2022.
Scalable ONN on-chip learning: See L2ight, NeurIPS 2021.
Memory-efficient ONN architecture: See Memory-Efficient-ONN, ICCV 2021.
SqueezeLight: Scalable ONNs with Multi-Operand Ring Resonators: See SqueezeLight, DATE 2021.


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳 定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

