@inproceedings{jiaqigu2021L2ight,
title = {L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
author = {Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
<h3><p align="center">Fast, Scalable, Easy Customization, Support Hardware-Aware Cross-Layer Co-Design</p></h3>
<p align="center">
<a href="https://github.com/JeremieMelo/pytorch-onn/blob/release/LICENSEE">
<img alt="MIT License" src="https://img.shields.io/apm/l/atomic-design-ui.svg?">
</a>
</p>
<br />
Integrated neuromorphic photonics simulation framework based on PyTorch. It supports coherent and incoherent optical neural networks (ONNs) training/inference on GPUs. It can scale up to million-parameter ONNs with efficient implementation.
Researchers on neuromorphic photonics, optical AI system design, photonic integrated circuit optimization, ONN training/inference.
CUDA-backed fast GPU support, optimized highly-parallel tensorized processing, versatile APIs for device/circuit/architecture/algorithm co-optimization
git clone https://github.com/JeremieMelo/pytorch-onn.git
cd pytorch-onn python3 setup.py install --user clean
or
./setup.sh
Construct optical NN models as simple as constructing a normal pytorch model.
import torch.nn as nn import torch.nn.functional as F import torchonn as onn from torchonn.models import ONNBaseModel class ONNModel(ONNBaseModel): def __init__(self, device=torch.device("cuda:0)): super().__init__(device=device) self.conv = onn.layers.MZIBlockConv2d( in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1, dilation=1, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.pool = nn.AdaptiveAvgPool2d(5) self.linear = onn.layers.MZIBlockLinear( in_features=8*5*5, out_features=10, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.conv.reset_parameters() self.linear.reset_parameters() def forward(self, x): x = torch.relu(self.conv(x)) x = self.pool(x) x = x.flatten(1) x = self.linear(x) return x
weight
, usv
, phase
modes and their conversion.python3 unitest/test_op.py
, and check the runtime comparison.fft
, hadamard
, zero_bias
, and trainable
modes.File | Description |
---|---|
torchonn/ | Library source files with model, layer, and device definition |
torchonn/op | Basic operators and CUDA-accelerated operators |
torchonn/layers | Optical device-implemented layers |
torchonn/models | Base ONN model templete |
torchonn/devices | Optical device parameters and configurations |
examples/ | ONN model building and training examples |
examples/configs | YAML-based configuration files |
examples/core | ONN model definition and training utility |
example/train.py | training script |
The examples/
folder contains more examples to train the ONN
models.
An example optical convolutional neural network MZI_CLASS_CNN
is defined in examples/core/models/mzi_cnn.py
.
Training facilities, e.g., optimizer, critetion, lr_scheduler, models are built in examples/core/builder.py
.
The training and validation logic is defined in examples/train.py
.
All training hyperparameters are hierarchically defined in the yaml configuration file examples/configs/mnist/mzi_onn/train.yml
(The final config is the union of all default.yml
from higher-level directories and this specific train.yml
).
By running the following commands,
# train the example MZI-based CNN model with 2 64-channel Conv layers and 1 Linear layer # training will happend in usv mode to optimize U, Sigma, and V* # projected gradient descent will be applied to guarantee the orthogonality of U and V* # the final step will convert unitary matrices into MZI phases and evaluate in the phase mode cd examples python3 train.py configs/mnist/mzi_cnn/train.yml # [followed by any command-line arguments that override the values in config file, e.g., --optimizer.lr=0.001]
Detailed documentations coming soon.
Jiaqi Gu (jqgu@utexas.edu)
Neural operator-enabled fast photonic device simulation: See NeurOLight, NeurIPS 2022.
Automatic photonic tensor core design: See ADEPT, DAC 2022.
Endurance-enhanced photonic in-memory computing: See ELight, ASP-DAC 2022.
Scalable ONN on-chip learning: See L2ight, NeurIPS 2021.
Memory-efficient ONN architecture: See Memory-Efficient-ONN, ICCV 2021.
SqueezeLight: Scalable ONNs with Multi-Operand Ring Resonators: See SqueezeLight, DATE 2021.
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号