pytorch-onn

pytorch-onn

基于PyTorch的光子神经网络仿真与优化框架

pytorch-onn是一个基于PyTorch的光子神经网络仿真框架。该框架支持GPU加速的相干和非相干光学神经网络训练与推理,可扩展至百万参数规模。它提供了高度优化的并行处理和多功能API,支持从器件到系统级的协同设计与优化。这一工具主要面向神经形态光子学、光学AI系统和光子集成电路优化等领域的研究人员。

PyTorch光子集成电路神经网络AI计算GPU加速Github开源项目
<p align="center"> <img src="torchonn_logo.jpg" alt="torchonn Logo" width="450"> </p> <h2><p align="center">A PyTorch Library for Photonic Integrated Circuit Simulation and Photonic AI Computing</p></h2>
@inproceedings{jiaqigu2021L2ight,
    title     = {L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
    author    = {Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
    booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
}
<h3><p align="center">Fast, Scalable, Easy Customization, Support Hardware-Aware Cross-Layer Co-Design</p></h3> <p align="center"> <a href="https://github.com/JeremieMelo/pytorch-onn/blob/release/LICENSEE"> <img alt="MIT License" src="https://img.shields.io/apm/l/atomic-design-ui.svg?"> </a> </p> <br />

👋 Welcome

What it is doing

Integrated neuromorphic photonics simulation framework based on PyTorch. It supports coherent and incoherent optical neural networks (ONNs) training/inference on GPUs. It can scale up to million-parameter ONNs with efficient implementation.

Who will benefit

Researchers on neuromorphic photonics, optical AI system design, photonic integrated circuit optimization, ONN training/inference.

Features

CUDA-backed fast GPU support, optimized highly-parallel tensorized processing, versatile APIs for device/circuit/architecture/algorithm co-optimization

Contents

<!-- toc --> <!-- tocstop -->

News

  • 09/17/2023: v0.0.6 available. Support add-drop MRR weight bank and initialize ONN layers from standard pytorch Conv2d/Linear!
  • 04/19/2022: v0.0.5 available. Automatic differentiable photonic tensor core search! Support customized coherent photonic SuperMesh construction from basic building blocks! (Gu+, ADEPT DAC 2022)
  • 04/18/2022: v0.0.4 available. Phase change material (PCM)-based photonic in-memory computing with endurance enhancement! (Zhu+, ELight ASP-DAC 2022)
  • 04/18/2022: v0.0.3 available. SqueezeLight architecture based on multi-operand microrings for ultra-compact optical neurocomputing! (Gu+, SqueezeLight DATE 2021)
  • 11/28/2021: v0.0.2 available. FFT-ONN-family is supported with trainable butterfly meshes for area-efficient frequency-domain optical neurocomputing! (Gu+, FFT-ONN ASP-DAC 2020) (Gu+, FFT-ONN-v2 IEEE TCAD 2021) (Feng+, PSNN arXiv 2021)
  • 06/10/2021: v0.0.1 available. MZI-ONN (Shen+, MZI-ONN) is supported. Feedbacks are highly welcomed!

Installation

From Source

Dependencies

  • Python >= 3.6
  • PyTorch >= 1.13.0
  • Tensorflow-gpu >= 2.5.0
  • pyutils >= 0.0.2
  • Others are listed in requirements.txt
  • GPU model training requires NVIDIA GPUs and compatible CUDA

Get the PyTorch-ONN Source

git clone https://github.com/JeremieMelo/pytorch-onn.git

Install PyTorch-ONN

cd pytorch-onn python3 setup.py install --user clean

or

./setup.sh

Usage

Construct optical NN models as simple as constructing a normal pytorch model.

import torch.nn as nn import torch.nn.functional as F import torchonn as onn from torchonn.models import ONNBaseModel class ONNModel(ONNBaseModel): def __init__(self, device=torch.device("cuda:0)): super().__init__(device=device) self.conv = onn.layers.MZIBlockConv2d( in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1, dilation=1, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.pool = nn.AdaptiveAvgPool2d(5) self.linear = onn.layers.MZIBlockLinear( in_features=8*5*5, out_features=10, bias=True, miniblock=4, mode="usv", decompose_alg="clements", photodetect=True, device=device, ) self.conv.reset_parameters() self.linear.reset_parameters() def forward(self, x): x = torch.relu(self.conv(x)) x = self.pool(x) x = x.flatten(1) x = self.linear(x) return x

Features

  • Support pytorch training MZI-based ONNs. Support MZI-based Linear, Conv2d, BlockLinear, and BlockConv2d. Support weight, usv, phase modes and their conversion.
  • Support phase quantization and non-ideality injection, including phase shifter gamma error, phase variations, and crosstalk.
  • CUDA-accelerated batched MZI array decomposition and reconstruction for ultra-fast real/complex matrix mapping, which achieves 10-50X speedup over CPU-based unitary group parametrization. Francis (Triangle), Reck (Triangle), Clements (Rectangle) styles MZI meshes are supported. To see the efficiency of our CUDA implementation, try the following unittest command at root directory, python3 unitest/test_op.py , and check the runtime comparison.
  • Support pytorch training general frequency-domain ONNs (Gu+, FFT-ONN ASP-DAC 2020) (Gu+, FFT-ONN-v2 IEEE TCAD 2021) (Feng+, PSNN). Support FFT-ONN BlockLinear, and BlockConv2d. Support fft, hadamard, zero_bias, and trainable modes.
  • Support multi-operand ring-based ONN architecture (Gu+, SqueezeLight DATE 2021). Support AllpassMORRCirculantLinear, AllpassMORRCirculantConv2d with built-in MORR nonlinearity.
  • Support phase change material (PCM)-based ONN architecture (Zhu+, ELight ASP-DAC 2022). Support PCMLinear and PCMConv2d with logrithmic PCM wire quantization and PCM array assignment.

TODOs

  • Support micro-ring resonator (MRR)-based ONN. (Tait+, SciRep 2017)
<!-- - [x] Support general frequency-domain ONN. (Gu+, [FFT-ONN](https://doi.org/10.1109/ASP-DAC47756.2020.9045156) ASP-DAC 2020) (Gu+, [FFT-ONN-v2](https://doi.org/10.1109/TCAD.2020.3027649) IEEE TCAD 2021) --> <!-- - [ ] Support multi-operand micro-ring (MORR)-based ONN. (Gu+, [SqueezeLight](https://jeremiemelo.github.io/publications/papers/ONN_DATE2021_SqueezeLight_Gu.pdf) DATE 2021) --> <!-- - [ ] Support differentiable quantization-aware training. (Gu+, [ROQ](https://doi.org/10.23919/DATE48585.2020.9116521) DATE 2020) -->
  • Support ONN on-chip learning via zeroth-order optimization. (Gu+, FLOPS DAC 2020) (Gu+, MixedTrain AAAI 2021)
<!-- - [ ] Support automatic differentiable ONN architecture search with SuperMesh training. (Gu+, [ADEPT](https://arxiv.org/abs/2112.08703) DAC 2022) -->

Files

FileDescription
torchonn/Library source files with model, layer, and device definition
torchonn/opBasic operators and CUDA-accelerated operators
torchonn/layersOptical device-implemented layers
torchonn/modelsBase ONN model templete
torchonn/devicesOptical device parameters and configurations
examples/ONN model building and training examples
examples/configsYAML-based configuration files
examples/coreONN model definition and training utility
example/train.pytraining script

More Examples

The examples/ folder contains more examples to train the ONN models.

An example optical convolutional neural network MZI_CLASS_CNN is defined in examples/core/models/mzi_cnn.py.

Training facilities, e.g., optimizer, critetion, lr_scheduler, models are built in examples/core/builder.py. The training and validation logic is defined in examples/train.py. All training hyperparameters are hierarchically defined in the yaml configuration file examples/configs/mnist/mzi_onn/train.yml (The final config is the union of all default.yml from higher-level directories and this specific train.yml ).

By running the following commands,

# train the example MZI-based CNN model with 2 64-channel Conv layers and 1 Linear layer # training will happend in usv mode to optimize U, Sigma, and V* # projected gradient descent will be applied to guarantee the orthogonality of U and V* # the final step will convert unitary matrices into MZI phases and evaluate in the phase mode cd examples python3 train.py configs/mnist/mzi_cnn/train.yml # [followed by any command-line arguments that override the values in config file, e.g., --optimizer.lr=0.001]

Detailed documentations coming soon.

Contact

Jiaqi Gu (jqgu@utexas.edu)

Related Projects using PyTorch-ONN Library

  • Neural operator-enabled fast photonic device simulation: See NeurOLight, NeurIPS 2022.

  • Automatic photonic tensor core design: See ADEPT, DAC 2022.

  • Endurance-enhanced photonic in-memory computing: See ELight, ASP-DAC 2022.

  • Scalable ONN on-chip learning: See L2ight, NeurIPS 2021.

  • Memory-efficient ONN architecture: See Memory-Efficient-ONN, ICCV 2021.

  • SqueezeLight: Scalable ONNs with Multi-Operand Ring Resonators: See SqueezeLight, DATE 2021.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多