Bayesian-Torch 是一个神经网络层和工具库,扩展了 PyTorch 的核心功能,以在深度学习模型中实现贝叶斯推理,从而对模型预测进行原则性的不确定性估计。
Bayesian-Torch 的设计具有灵活性,通过简单地用贝叶斯层替换确定性层,可以无缝地将确定性深度神经网络模型扩展为相应的贝叶斯形式。它使用户能够在深度神经网络中执行随机变分推理 。
贝叶斯层:
具有重参数化蒙特卡洛估计器的变分层 [Blundell et al. 2015]
LinearReparameterization
Conv1dReparameterization, Conv2dReparameterization, Conv3dReparameterization, ConvTranspose1dReparameterization, ConvTranspose2dReparameterization, ConvTranspose3dReparameterization
LSTMReparameterization
具有 Flipout 蒙特卡洛估计器的变分层 [Wen et al. 2018]
LinearFlipout
Conv1dFlipout, Conv2dFlipout, Conv3dFlipout, ConvTranspose1dFlipout, ConvTranspose2dFlipout, ConvTranspose3dFlipout
LSTMFlipout
主要特性:
使用 pip 安装核心库:
pip install bayesian-torch
从源代码安装最新开发版本:
git clone https://github.com/IntelLabs/bayesian-torch cd bayesian-torch pip install .
使用 Bayesian-Torch 构建贝叶斯深度神经网络有两种方法:
(1) 例如,从 torchvision 的确定性 ResNet18 模型构建贝叶斯 ResNet18 非常简单:
import torch
import torchvision
from bayesian_torch.models.dnn_to_bnn import dnn_to_bnn, get_kl_loss
const_bnn_prior_parameters = {
"prior_mu": 0.0,
"prior_sigma": 1.0,
"posterior_mu_init": 0.0,
"posterior_rho_init": -3.0,
"type": "Reparameterization", # Flipout 或 Reparameterization
"moped_enable": False, # 设为 True 以从预训练的 dnn 权重初始化 mu/sigma
"moped_delta": 0.5,
}
model = torchvision.models.resnet18()
dnn_to_bnn(model, const_bnn_prior_parameters)
要使用 MOPED 方法,即从预训练的确定性模型设置先验并初始化变分参数(有助于大型模型的训练收敛):
const_bnn_prior_parameters = {
"prior_mu": 0.0,
"prior_sigma": 1.0,
"posterior_mu_init": 0.0,
"posterior_rho_init": -3.0,
"type": "Reparameterization", # Flipout 或 Reparameterization
"moped_enable": True, # 设为 True 以从预训练的 dnn 权重初始化 mu/sigma
"moped_delta": 0.5,
}
model = torchvision.models.resnet18(pretrained=True)
dnn_to_bnn(model, const_bnn_prior_parameters)
训练代码片段:
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), args.learning_rate)
output = model(x_train)
kl = get_kl_loss(model)
ce_loss = criterion(output, y_train)
loss = ce_loss + kl / args.batch_size
loss.backward()
optimizer.step()
测试代码片段:
model.eval()
with torch.no_grad():
output_mc = []
for mc_run in range(args.num_monte_carlo):
logits = model(x_test)
probs = torch.nn.functional.softmax(logits, dim=-1)
output_mc.append(probs)
output = torch.stack(output_mc)
pred_mean = output.mean(dim=0)
y_pred = torch.argmax(pred_mean, axis=-1)
test_acc = (y_pred.data.cpu().numpy() == y_test.data.cpu().numpy()).mean()
不确定性量化:
from utils.util import predictive_entropy, mutual_information
predictive_uncertainty = predictive_entropy(output.data.cpu().numpy())
model_uncertainty = mutual_information(output.data.cpu().numpy())
(2) 对于构建自定义模型,我们提供了使用贝叶斯层的示例模型实现。
我们提供了示例用法和脚本来训练/评估模型。以下是CIFAR10示例的说明,类似的ImageNet和MNIST脚本也可用。
cd bayesian_torch
要在CIFAR10上训练贝叶斯ResNet,运行以下命令:
平均场变分推断(重参数化蒙特卡罗估计器)
sh scripts/train_bayesian_cifar.sh
平均场变分推断(Flipout蒙特卡罗估计器)
sh scripts/train_bayesian_flipout_cifar.sh
要在CIFAR10上训练确定性ResNet,运行以下命令:
普通
sh scripts/train_deterministic_cifar.sh
要在CIFAR10上评估贝叶斯ResNet,运行以下命令:
平均场变分推断(重参数化蒙特卡罗估计器)
sh scripts/test_bayesian_cifar.sh
平均场变分推断(Flipout蒙特卡罗估计器)
sh scripts/test_bayesian_flipout_cifar.sh
要在CIFAR10上评估确定性ResNet,运行以下命令:
普通
sh scripts/test_deterministic_cifar.sh
要量化贝叶斯ResNet(转换为INT8)并在CIFAR10上评估,运行以下命令:
sh scripts/quantize_bayesian_cifar.sh
如果您使用此代码,请按以下方式引用:
@software{krishnan2022bayesiantorch, author = {Ranganath Krishnan and Pi Esposito and Mahesh Subedar}, title = {Bayesian-Torch: Bayesian neural network layers for uncertainty estimation}, month = jan, year = 2022, doi = {10.5281/zenodo.5908307}, url = {https://doi.org/10.5281/zenodo.5908307} howpublished = {\url{https://github.com/IntelLabs/bayesian-torch}} }
准确度与不确定性校准(AvUC)损失
@inproceedings{NEURIPS2020_d3d94468, title = {Improving model calibration with accuracy versus uncertainty optimization}, author = {Krishnan, Ranganath and Tickoo, Omesh}, booktitle = {Advances in Neural Information Processing Systems}, volume = {33}, pages = {18237--18248}, year = {2020}, url = {https://proceedings.neurips.cc/paper/2020/file/d3d9446802a44259755d38e6d163e820-Paper.pdf} }
贝叶斯深度学习量化框架
@inproceedings{lin2023quantization, title={Quantization for Bayesian Deep Learning: Low-Precision Characterization and Robustness}, author={Lin, Jun-Liang and Krishnan, Ranganath and Ranipa, Keyur Ruganathbhai and Subedar, Mahesh and Sanghavi, Vrushabh and Arunachalam, Meena and Tickoo, Omesh and Iyer, Ravishankar and Kandemir, Mahmut Taylan}, booktitle={2023 IEEE International Symposium on Workload Characterization (IISWC)}, pages={180--192}, year={2023}, organization={IEEE} }
使用DNN的经验贝叶斯模型先验(MOPED)
@inproceedings{krishnan2020specifying, title={Specifying weight priors in bayesian deep neural networks with empirical bayes}, author={Krishnan, Ranganath and Subedar, Mahesh and Tickoo, Omesh}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={34}, number={04}, pages={4477--4484}, year={2020}, url = {https://ojs.aaai.org/index.php/AAAI/article/view/5875} }
该库和代码面向研究人员和开发人员,使他们能够量化深度学习模型中的原则性不确定性估计,以开发具有不确定性意识的AI模型。 欢迎反馈、问题和贡献。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是 法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号