革新端到端多人姿态估计框架
ED-Pose创新性地将多 人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。
<img src="https://yellow-cdn.veclightyear.com/ab5030c0/e2ae7373-534f-4786-a5a7-491df68a4f4d.gif" style="height:200px" /> <img src="https://yellow-cdn.veclightyear.com/ab5030c0/131d2c3f-a3d8-43c4-8650-8515e951c2ae.gif" style="height:200px" />
这是我们ICLR 2023论文"显式框检测统一端到端多人姿态估计"的官方PyTorch实现。
我们提出了ED-Pose,一个用于多人姿态估计的端到端框架,具有显式框检测功能。ED-Pose将这个任务重新考虑为两个具有统一表示和回归监督的显式框检测过程。 总的来说,ED-Pose在概念上简单,无需后处理和密集热图监督。
2023/08/08
: 1. 我们在Human-Art数据集上支持ED-Pose。2. 我们上传了更快速可视化的推理脚本。该仓库包含以下进一步修改:
集成到detrex中。
我们已将模型检查点放在这里。
模型 | 骨干网络 | 学习率调度 | mAP | AP<sup>50</sup> | AP<sup>75</sup> | AP<sup>M</sup> | AP<sup>L</sup> | 时间 (ms) | 下载 |
---|---|---|---|---|---|---|---|---|---|
ED-Pose | R-50 | 60e | 71.7 | 89.7 | 78.8 | 66.2 | 79.7 | 51 | Google Drive |
ED-Pose | Swin-L | 60e | 74.3 | 91.5 | 81.7 | 68.5 | 82.7 | 88 | Google Drive |
ED-Pose | Swin-L-5scale | 60e | 75.8 | 92.3 | 82.9 | 70.4 | 83.5 | 142 | Google Drive |
模型 | 骨干网络 | 学习率调度 | mAP | AP<sup>50</sup> | AP<sup>75</sup> | AP<sup>E</sup> | AP<sup>M</sup> | AP<sup>H</sup> | 下载 |
---|---|---|---|---|---|---|---|---|---|
ED-Pose | R-50 | 80e | 69.9 | 88.6 | 75.8 | 77.7 | 70.6 | 60.9 | Google Drive |
ED-Pose | Swin-L | 80e | 73.1 | 90.5 | 79.8 | 80.5 | 73.8 | 63.8 | Google Drive |
ED-Pose | Swin-L-5scale | 80e | 76.6 | 92.4 | 83.3 | 83.0 | 77.3 | 68.3 | Google Drive |
模型 | 骨干网络 | 损失 | mAP | AP<sup>50</sup> | AP<sup>75</sup> | AP<sup>M</sup> | AP<sup>L</sup> |
---|---|---|---|---|---|---|---|
DirectPose | R-50 | 回归 | 62.2 | 86.4 | 68.2 | 56.7 | 69.8 |
DirectPose | R-101 | 回归 | 63.3 | 86.7 | 69.4 | 57.8 | 71.2 |
FCPose | R-50 | 回归+热图 | 64.3 | 87.3 | 71.0 | 61.6 | 70.5 |
FCPose | R-101 | 回归+热图 | 65.6 | 87.9 | 72.6 | 62.1 | 72.3 |
InsPose | R-50 | 回归+热图 | 65.4 | 88.9 | 71.7 | 60.2 | 72.7 |
InsPose | R-101 | 回归+热图 | 66.3 | 89.2 | 73.0 | 61.2 | 73.9 |
PETR | R-50 | 回归+热图 | 67.6 | 89.8 | 75.3 | 61.6 | 76.0 |
PETR | Swin-L | 回归+热图 | 70.5 | 91.5 | 78.7 | 65.2 | 78.0 |
ED-Pose | R-50 | 回归 | 69.8 | 90.2 | 77.2 | 64.3 | 77.4 |
ED-Pose | Swin-L | 回归 | 72.7 | 92.3 | 80.9 | 67.6 | 80.0 |
COCO测试开发数据集上的结果
架构 | 主干网络 | mAP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | 下载 |
---|---|---|---|---|---|---|---|
ED-Pose | ResNet-50 | 0.723 | 0.861 | 0.774 | 0.808 | 0.921 | Google Drive |
架构 | 主干网络 | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | 下载 |
---|---|---|---|---|---|---|---|
ED-Pose | ResNet-50 | 0.724 | 0.898 | 0.794 | 0.799 | 0.946 | Google Drive |
我们使用 DN-Deformable-DETR 作为我们的代码基础。我们在 python=3.7.3,pytorch=1.9.0,cuda=11.1
环境下测试我们的模型。其他版本可能也适用。
git clone https://github.com/IDEA-Research/ED-Pose.git cd ED-Pose
按照 https://pytorch.org/get-started/locally/ 的说明进行操作。
# 示例: conda install -c pytorch pytorch torchvision
pip install -r requirements.txt
</details> <details> <summary>数据准备</summary>cd models/edpose/ops python setup.py build install # 单元测试(应该看到所有检查都为 True) python test.py cd ../../..
对于 COCO 数据,请从 COCO 下载 下载。 coco_dir 应该如下所示:
|-- EDPose
`-- |-- coco_dir
`-- |-- annotations
| |-- person_keypoints_train2017.json
| `-- person_keypoints_val2017.json
`-- images
|-- train2017
| |-- 000000000009.jpg
| |-- 000000000025.jpg
| |-- 000000000030.jpg
| |-- ...
`-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
对于 CrowdPose 数据,请从 CrowdPose 下载 下载, crowdpose_dir 应该如下所示:
|-- ED-Pose
`-- |-- crowdpose_dir
`-- |-- json
| |-- crowdpose_train.json
| |-- crowdpose_val.json
| |-- crowdpose_trainval.json (由 util/crowdpose_concat_train_val.py 生成)
| `-- crowdpose_test.json
`-- images
|-- 100000.jpg
|-- 100001.jpg
|-- 100002.jpg
|-- 100003.jpg
|-- 100004.jpg
|-- 100005.jpg
|-- ...
</details>
#对于 ResNet-50:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
python main.py \
--output_dir "logs/coco_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
--dataset_file="coco"
#对于 Swin-L:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
--dataset_file="coco"
</details>
<details>
<summary>分布式运行</summary>
#对于 ResNet-50:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/coco_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
--dataset_file="coco"
#对于 Swin-L:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
--dataset_file="coco"
</details>
#对于 ResNet-50:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
python main.py \
--output_dir "logs/crowdpose_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
--dataset_file="crowdpose"
#对于 Swin-L:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python main.py \
--output_dir "logs/crowdpose_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
--dataset_file="crowdpose"
</details>
<details>
<summary>分布式运行</summary>
#对于 ResNet-50:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/crowdpose_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
--dataset_file="crowdpose"
#对于 Swin-L:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/crowdpose_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
--dataset_file="crowdpose"
</details>
我们已将在 ImageNet-22k 上预训练的 Swin-L 模型放在这里。
export EDPOSE_COCO_PATH=/path/to/your/cocodir
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/coco_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_r50_coco.pth" \
--eval
</details>
<details>
<summary>Swin-L</summary>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_swinl_coco.pth" \
--eval
</details>
<details>
<summary>Swin-L-5scale</summary>
```
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
return_interm_indices=0,1,2,3 num_feature_levels=5 \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_swinl_5scale_coco.pth" \
--eval
```
</详情>
<详情> <概要>ResNet-50</概要>
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
python main.py \
--output_dir "logs/crowdpose_r50" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
--dataset_file="crowdpose"\
--pretrain_model_path "./models/edpose_r50_crowdpose.pth" \
--eval
</详情>
<详情> <概要>Swin-L</概要>
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python main.py \
--output_dir "logs/crowdpose_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
--dataset_file="crowdpose" \
--pretrain_model_path "./models/edpose_swinl_crowdpose.pth" \
--eval
</详情>
<详情> <概要>Swin-L-5scale</概要>
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--output_dir "logs/crowdpose_swinl" \
-c config/edpose.cfg.py \
--options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
return_interm_indices=0,1,2,3 num_feature_levels=5 \
-- dataset_file="crowdpose" \
--pretrain_model_path "./models/edpose_swinl_5scale_crowdpose.pth" \
--eval
</详情>
<详情> <概要>ResNet-50</概要>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
python -m torch.distributed.launch --nproc_per_node=1 main.py \
--output_dir "logs/coco_r50" \
-c config/edpose.cfg.py \
--options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_r50_coco.pth" \
--eval
</详情>
<详情> <概要>Swin-L</概要>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
python -m torch.distributed.launch --nproc_per_node=1 main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_swinl_coco.pth" \
--eval
</详情>
<详情> <概要>Swin-L-5scale</概要>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
python -m torch.distributed.launch --nproc_per_node=1 main.py \
--output_dir "logs/coco_swinl" \
-c config/edpose.cfg.py \
--options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
return_interm_indices=0,1,2,3 num_feature_levels=5 \
--dataset_file="coco" \
--pretrain_model_path "./models/edpose_swinl_5scale_coco.pth" \
--eval
</详情>
@inproceedings{
yang2023explicit,
title={Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation},
author={Jie Yang and Ailing Zeng and Shilong Liu and Feng Li and Ruimao Zhang and Lei Zhang},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=s4WVupnJjmX}
}
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交 互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追 星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号