ED-Pose

ED-Pose

革新端到端多人姿态估计框架

ED-Pose创新性地将多人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。

ED-Pose多人姿态估计目标检测计算机视觉深度学习Github开源项目

显式框检测统一端到端多人姿态估计

PWC PWC

<img src="https://yellow-cdn.veclightyear.com/ab5030c0/e2ae7373-534f-4786-a5a7-491df68a4f4d.gif" style="height:200px" /> <img src="https://yellow-cdn.veclightyear.com/ab5030c0/131d2c3f-a3d8-43c4-8650-8515e951c2ae.gif" style="height:200px" />

这是我们ICLR 2023论文"显式框检测统一端到端多人姿态估计"的官方PyTorch实现。

⭐ ED-Pose

方法

我们提出了ED-Pose,一个用于多人姿态估计的端到端框架,具有显式框检测功能。ED-Pose将这个任务重新考虑为两个具有统一表示和回归监督的显式框检测过程。 总的来说,ED-Pose在概念上简单,无需后处理和密集热图监督。

  1. ED-Pose作为一个完全端到端的框架,首次使用L1回归损失在相同骨干网络下超越了基于热图的自上而下方法,在COCO数据集上提高了1.2 AP。
  2. ED-Pose在CrowdPose数据集上达到了76.6 AP的最先进性能,且无需测试时增强。

🔥 新闻

  • 2023/08/08: 1. 我们在Human-Art数据集上支持ED-Pose。2. 我们上传了更快速可视化的推理脚本。

🐟 待办事项

该仓库包含以下进一步修改:

🚀 模型库

我们已将模型检查点放在这里

COCO val2017数据集上的结果

模型骨干网络学习率调度mAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>时间 (ms)下载
ED-PoseR-5060e71.789.778.866.279.751Google Drive
ED-PoseSwin-L60e74.391.581.768.582.788Google Drive
ED-PoseSwin-L-5scale60e75.892.382.970.483.5142Google Drive

CrowdPose测试数据集上的结果

模型骨干网络学习率调度mAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>E</sup>AP<sup>M</sup>AP<sup>H</sup>下载
ED-PoseR-5080e69.988.675.877.770.660.9Google Drive
ED-PoseSwin-L80e73.190.579.880.573.863.8Google Drive
ED-PoseSwin-L-5scale80e76.692.483.383.077.368.3Google Drive

COCO测试开发数据集上的结果

模型骨干网络损失mAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>
DirectPoseR-50回归62.286.468.256.769.8
DirectPoseR-101回归63.386.769.457.871.2
FCPoseR-50回归+热图64.387.371.061.670.5
FCPoseR-101回归+热图65.687.972.662.172.3
InsPoseR-50回归+热图65.488.971.760.272.7
InsPoseR-101回归+热图66.389.273.061.273.9
PETRR-50回归+热图67.689.875.361.676.0
PETRSwin-L回归+热图70.591.578.765.278.0
ED-PoseR-50回归69.890.277.264.377.4
ED-PoseSwin-L回归72.792.380.967.680.0

COCO测试开发数据集上的结果

使用Human-Art和COCO数据集联合训练的结果

🥂 注意:在ED-Pose上使用Human-Art训练可以提升MSCOCO上的性能!

Human-Art验证集上的结果

架构主干网络mAPAP<sup>50</sup>AP<sup>75</sup>ARAR<sup>50</sup>下载
ED-PoseResNet-500.7230.8610.7740.8080.921Google Drive

COCO val2017 上的结果

架构主干网络APAP<sup>50</sup>AP<sup>75</sup>ARAR<sup>50</sup>下载
ED-PoseResNet-500.7240.8980.7940.7990.946Google Drive

注意:

  • ED-Pose 没有使用任何测试时数据增强。
  • 我们在 Swin-L-5scale 设置下使用 Object365 数据集来预训练 ED-Pose 的人体检测。

🚢 环境配置

<details> <summary>安装</summary>

我们使用 DN-Deformable-DETR 作为我们的代码基础。我们在 python=3.7.3,pytorch=1.9.0,cuda=11.1 环境下测试我们的模型。其他版本可能也适用。

  1. 克隆此仓库
git clone https://github.com/IDEA-Research/ED-Pose.git cd ED-Pose
  1. 安装 Pytorch 和 torchvision

按照 https://pytorch.org/get-started/locally/ 的说明进行操作。

# 示例: conda install -c pytorch pytorch torchvision
  1. 安装其他所需的包
pip install -r requirements.txt
  1. 编译 CUDA 算子
cd models/edpose/ops python setup.py build install # 单元测试(应该看到所有检查都为 True) python test.py cd ../../..
</details> <details> <summary>数据准备</summary>

对于 COCO 数据,请从 COCO 下载 下载。 coco_dir 应该如下所示:

|-- EDPose
`-- |-- coco_dir
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

对于 CrowdPose 数据,请从 CrowdPose 下载 下载, crowdpose_dir 应该如下所示:

|-- ED-Pose
`-- |-- crowdpose_dir
    `-- |-- json
        |   |-- crowdpose_train.json
        |   |-- crowdpose_val.json
        |   |-- crowdpose_trainval.json (由 util/crowdpose_concat_train_val.py 生成)
        |   `-- crowdpose_test.json
        `-- images
            |-- 100000.jpg
            |-- 100001.jpg
            |-- 100002.jpg
            |-- 100003.jpg
            |-- 100004.jpg
            |-- 100005.jpg
            |-- ... 
</details>

🥳 运行

在 COCO 上训练:

<details> <summary>单 GPU</summary>
#对于 ResNet-50:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
  python main.py \
 --output_dir "logs/coco_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
 --dataset_file="coco"
#对于 Swin-L:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python main.py \
 --output_dir "logs/coco_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
 --dataset_file="coco"
</details> <details> <summary>分布式运行</summary>
#对于 ResNet-50:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
  python -m torch.distributed.launch --nproc_per_node=4  main.py \
 --output_dir "logs/coco_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
 --dataset_file="coco"
#对于 Swin-L:
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python -m torch.distributed.launch --nproc_per_node=4 main.py \
 --output_dir "logs/coco_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
 --dataset_file="coco"
</details>

在 CrowdPose 上训练:

<details> <summary>单 GPU</summary>
#对于 ResNet-50:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
  python main.py \
 --output_dir "logs/crowdpose_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
 --dataset_file="crowdpose"
#对于 Swin-L:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python main.py \
 --output_dir "logs/crowdpose_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
 --dataset_file="crowdpose"
</details> <details> <summary>分布式运行</summary>
#对于 ResNet-50:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
  python -m torch.distributed.launch --nproc_per_node=4  main.py \
 --output_dir "logs/crowdpose_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
 --dataset_file="crowdpose"
#对于 Swin-L:
export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python -m torch.distributed.launch --nproc_per_node=4 main.py \
 --output_dir "logs/crowdpose_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
 --dataset_file="crowdpose"
</details>

我们已将在 ImageNet-22k 上预训练的 Swin-L 模型放在这里

在 COCO 上评估:

<details> <summary>ResNet-50</summary>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
  python -m torch.distributed.launch --nproc_per_node=4  main.py \
 --output_dir "logs/coco_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
 --dataset_file="coco" \
 --pretrain_model_path "./models/edpose_r50_coco.pth" \
 --eval
</details> <details> <summary>Swin-L</summary>
export EDPOSE_COCO_PATH=/path/to/your/cocodir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python -m torch.distributed.launch --nproc_per_node=4 main.py \
 --output_dir "logs/coco_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
 --dataset_file="coco" \
 --pretrain_model_path "./models/edpose_swinl_coco.pth" \
 --eval
</details> <details> <summary>Swin-L-5scale</summary> ``` export EDPOSE_COCO_PATH=/path/to/your/cocodir export pretrain_model_path=/path/to/your/swin_L_384_22k python -m torch.distributed.launch --nproc_per_node=4 main.py \ --output_dir "logs/coco_swinl" \ -c config/edpose.cfg.py \ --options batch_size=4 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \ return_interm_indices=0,1,2,3 num_feature_levels=5 \ --dataset_file="coco" \ --pretrain_model_path "./models/edpose_swinl_5scale_coco.pth" \ --eval ``` </详情>

在CrowdPose上评估:

<详情> <概要>ResNet-50</概要>

export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
  python main.py \
 --output_dir "logs/crowdpose_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='resnet50' \
 --dataset_file="crowdpose"\
 --pretrain_model_path "./models/edpose_r50_crowdpose.pth" \
 --eval

</详情>

<详情> <概要>Swin-L</概要>

export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python main.py \
 --output_dir "logs/crowdpose_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
 --dataset_file="crowdpose" \
 --pretrain_model_path "./models/edpose_swinl_crowdpose.pth" \
 --eval

</详情>

<详情> <概要>Swin-L-5scale</概要>

export EDPOSE_CrowdPose_PATH=/path/to/your/crowdpose_dir
export pretrain_model_path=/path/to/your/swin_L_384_22k
  python -m torch.distributed.launch --nproc_per_node=4 main.py \
 --output_dir "logs/crowdpose_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=4 epochs=80 lr_drop=75 num_body_points=14 backbone='swin_L_384_22k' \
 return_interm_indices=0,1,2,3 num_feature_levels=5 \
 -- dataset_file="crowdpose" \
 --pretrain_model_path "./models/edpose_swinl_5scale_crowdpose.pth" \
 --eval

</详情>

通过COCO关键点格式进行可视化:

<详情> <概要>ResNet-50</概要>

export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
  python -m torch.distributed.launch --nproc_per_node=1  main.py \
 --output_dir "logs/coco_r50" \
 -c config/edpose.cfg.py \
 --options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='resnet50' \
 --dataset_file="coco" \
 --pretrain_model_path "./models/edpose_r50_coco.pth" \
 --eval

</详情>

<详情> <概要>Swin-L</概要>

export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
  python -m torch.distributed.launch --nproc_per_node=1 main.py \
 --output_dir "logs/coco_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
 --dataset_file="coco" \
 --pretrain_model_path "./models/edpose_swinl_coco.pth" \
 --eval

</详情>

<详情> <概要>Swin-L-5scale</概要>

export EDPOSE_COCO_PATH=/path/to/your/cocodir
export Inference_Path=/path/to/your/inference_dir
  python -m torch.distributed.launch --nproc_per_node=1 main.py \
 --output_dir "logs/coco_swinl" \
 -c config/edpose.cfg.py \
 --options batch_size=1 epochs=60 lr_drop=55 num_body_points=17 backbone='swin_L_384_22k' \
  return_interm_indices=0,1,2,3 num_feature_levels=5 \
 --dataset_file="coco" \
 --pretrain_model_path "./models/edpose_swinl_5scale_coco.pth" \
 --eval

</详情>

💃🏻 引用ED-Pose

@inproceedings{
yang2023explicit,
title={Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation},
author={Jie Yang and Ailing Zeng and Shilong Liu and Feng Li and Ruimao Zhang and Lei Zhang},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=s4WVupnJjmX}
}

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多