🚩 [更新] PyMAF-X 的面部部分已更新。请在 NoW 基准测试 上查看仅面部评估结果。
<div align="center">张宏文 · 田雅婷 · 张宇翔 · 李梦成 · 安亮 · 孙哲南 · 刘烨斌
conda create --no-default-packages -n pymafx python=3.8
conda activate pymafx
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
requirements.txt 中的包pip install -r requirements.txt
smpl_downsampling.npz 和 mano_downsampling.npz
bash fetch_data.sh
SMPL 和 SMPL-X 模型文件
下载 部分网格 文件并将其放入
./data/partial_mesh目录。
下载 预训练模型 并将其放入
./data/pretrained_model目录。 收集上述必要文件后,./data目录的结构预期如下:
./data
├── J_regressor_extra.npy
├── smpl_mean_params.npz
├── smpl_downsampling.npz
├── mano_downsampling.npz
├── flame_downsampling.npy
├── partial_mesh
│ └── ***_vids.npz
├── pretrained_model
│ └── PyMAF-X_model_checkpoint_v1.1.pt
└── smpl
├── FLAME2020
│ ├── FLAME_NEUTRAL.pkl
│ ├── flame_dynamic_embedding.npy
│ └── flame_static_embedding.pkl
├── MANO_RIGHT.pkl
├── SMPLX_NEUTRAL_2020.npz
├── SMPL_NEUTRAL.pkl
└── model_transfer
├── MANO_SMPLX_vertex_ids.pkl
├── SMPL-X__FLAME_vertex_ids.npy
└── smplx_to_smpl.pkl
你可以先在我们准备的 Google Colab 笔记本上试一试,无需自己准备环境:
运行演示代码。
python -m apps.demo_smplx --image_folder examples/coco_images --detection_threshold 0.3 --pretrained_model data/pretrained_model/PyMAF-X_model_checkpoint_v1.1.pt --misc TRAIN.BHF_MODE full_body MODEL.PyMAF.HAND_VIS_TH 0.1
python -m apps.demo_smplx --vid_file examples/dancer_short.mp4 --pretrained_model data/pretrained_model/PyMAF-X_model_checkpoint_v1.1.pt --misc TRAIN.BHF_MODE full_body MODEL.PyMAF.HAND_VIS_TH 0.1
结果将保存在 ./output 目录。你可以在脚本中设置不同的超参数,例如,--detection_threshold 用于人体检测阈值,MODEL.PyMAF.HAND_VIS_TH 用于手部可见性阈值。
要进行训练,我们首先需要收集训练数据集的预处理文件。伪 SMPL-X 标签(带有 'xpose'/'xshape' 键)可以在这里下载。关于训练的更多细节,请参考 PyMAF。示例用法:
python -m apps.train --regressor pymaf_net --train_data h36m_coco_itw --eval_every 10 --save_every 20 --train_data h36m_coco_itw --misc TRAIN.BATCH_SIZE 64 MODEL.PyMAF.AUX_SUPV_ON True MODEL.PyMAF.TRANS.USE_ATT True MODEL.PyMAF.TRANS.ATT_HEAD 1 MODEL.PyMAF.TRANS.ATT_FEAT_IDX 2 MODEL.MESH_MODEL smplx TRAIN.USE_EFT True MODEL.PyMAF.USE_CAM_FEAT True LOSS.SHAPE_W 0.6 MODEL.PyMAF.BACKBONE res50 POSE_RES_MODEL.PRETR_SET coco
如果这项工作对你的研究有帮助,请引用以下论文:
@article{pymafx2023,
title={PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images},
author={Zhang, Hongwen and Tian, Yating and Zhang, Yuxiang and Li, Mengcheng and An, Liang and Sun, Zhenan and Liu, Yebin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2023}
}
@inproceedings{pymaf2021, 标题={PyMAF: 基于金字塔网格对齐反馈循环的3D人体姿态和形状回归}, 作者={张宏文 and 田雅婷 and 周鑫池 and 欧阳万里 and 刘烨斌 and 王立民 and 孙哲南}, 会议论文集={国际计算机视觉会议论文集}, 年份={2021} }
## 致谢
部分代码借鉴自以下项目,包括 [DaNet](https://github.com/HongwenZhang/DaNet-3DHumanReconstruction), [SPIN](https://github.com/nkolot/SPIN), [VIBE](https://github.com/mkocabas/VIBE), [SPEC](https://github.com/mkocabas/SPEC), [MeshGraphormer](https://github.com/microsoft/MeshGraphormer), [PIFu](https://github.com/shunsukesaito/PIFu), [DensePose](https://github.com/facebookresearch/DensePose), [HMR](https://github.com/akanazawa/hmr), [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch), [pose_resnet](https://github.com/Microsoft/human-pose-estimation.pytorch)。非常感谢他们的贡献。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号