本仓库包含了以下论文在PyTorch中的参考实现,使用CIFAR作为说明性示例: (1) 监督对比学习。论文 (2) 视觉表示对比学习的简单框架。论文
${\color{red}注意}$:如果您发现本仓库中的supcon损失实现难以解析,我们已经为您准备好了。Supcon损失本质上只是一个交叉熵损失(参见StableRep论文中的等式4)。因此,我们在这里提供了一个更清晰简洁的实现。希望这能帮到您。
ImageNet模型(使用动量编码器技巧的小批量大小)已在此处发布。它达到了超过79%的top-1准确率。
losses.py
中的损失函数SupConLoss
接受特征
(L2归一化)和标签
作为输入,并返回损失。如果标签
为None
或未传递给它,则退化为SimCLR。
用法:
from losses import SupConLoss # 定义具有温度参数`temp`的损失 criterion = SupConLoss(temperature=temp) # features: [bsz, n_views, f_dim] # `n_views`是每张图像的裁剪数量 # 最好在f_dim维度上进行L2归一化 features = ... # labels: [bsz] labels = ... # SupContrast loss = criterion(features, labels) # 或 SimCLR loss = criterion(features) ...
CIFAR-10的结果:
架构 | 设置 | 损失 | 准确率(%) | |
---|---|---|---|---|
SupCrossEntropy | ResNet50 | 监督 | 交叉熵 | 95.0 |
SupContrast | ResNet50 | 监督 | 对比 | 96.0 |
SimCLR | ResNet50 | 无监督 | 对比 | 93.6 |
CIFAR-100的结果:
架构 | 设置 | 损失 | 准确率(%) | |
---|---|---|---|---|
SupCrossEntropy | ResNet50 | 监督 | 交叉熵 | 75.3 |
SupContrast | ResNet50 | 监督 | 对比 | 76.5 |
SimCLR | ResNet50 | 无监督 | 对比 | 70.7 |
ImageNet的结果(敬请期待):
架构 | 设置 | 损失 | 准确率(%) | |
---|---|---|---|---|
SupCrossEntropy | ResNet50 | 监督 | 交叉熵 | - |
SupContrast | ResNet50 | 监督 | 对比 | 79.1 (MoCo技巧) |
SimCLR | ResNet50 | 无监督 | 对比 | - |
您可以使用CUDA_VISIBLE_DEVICES
设置适当数量的GPU,和/或通过--dataset cifar100
切换到CIFAR100。
(1) 标准交叉熵
python main_ce.py --batch_size 1024 \
--learning_rate 0.8 \
--cosine --syncBN \
(2) 监督对比学习 预训练阶段:
python main_supcon.py --batch_size 1024 \
--learning_rate 0.5 \
--temp 0.1 \
--cosine
<s>您也可以指定--syncBN
,但我发现它对SupContrast并不关键(syncBN
95.9% vs BN
96.0%)。</s>
警告:目前,--syncBN
没有效果,因为代码使用的是DataParallel
而不是DistributedDataParaleel
线性评估阶段:
python main_linear.py --batch_size 512 \
--learning_rate 5 \
--ckpt /path/to/model.pth
(3) SimCLR 预训练阶段:
python main_supcon.py --batch_size 1024 \
--learning_rate 0.5 \
--temp 0.5 \
--cosine --syncBN \
--method SimCLR
--method SimCLR
标志只是阻止将标签
传递给SupConLoss
准则。
线性评估阶段:
python main_linear.py --batch_size 512 \
--learning_rate 1 \
--ckpt /path/to/model.pth
在自定义数据集上:
python main_supcon.py --batch_size 1024 \
--learning_rate 0.5 \
--temp 0.1 --cosine \
--dataset path \
--data_folder ./path \
--mean "(0.4914, 0.4822, 0.4465)" \
--std "(0.2675, 0.2565, 0.2761)" \
--method SimCLR
--data_folder
必须采用./path/label/xxx.png的形式,遵循https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder 约定。
(1) 标准交叉熵
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/7c04f101-778d-48aa-9a5c-b838cb6cfbbc.jpg" width="400"> </p>(2) 监督对比学习
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/242220eb-e53c-49c8-9214-d49d26eb1c5f.jpg" width="800"> </p>(3) SimCLR
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/3dbc96e5-5ff5-4dc9-88b7-79429fa9c0b0.jpg" width="800"> </p>@Article{khosla2020supervised,
title = {Supervised Contrastive Learning},
author = {Prannay Khosla and Piotr Teterwak and Chen Wang and Aaron Sarna and Yonglong Tian and Phillip Isola and Aaron Maschinot and Ce Liu and Dilip Krishnan},
journal = {arXiv preprint arXiv:2004.11362},
year = {2020},
}
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视 角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号