llm-hallucination-survey

llm-hallucination-survey

大语言模型幻觉问题研究综述

该项目全面调查了大语言模型中的幻觉问题,涵盖评估方法、成因分析和缓解策略。研究包括输入冲突、上下文冲突和事实冲突等多种幻觉类型,并汇总了相关学术文献。项目成果有助于提升大语言模型在实际应用中的可靠性,为该领域的研究和开发提供重要参考。

幻觉大语言模型评估事实一致性自相矛盾Github开源项目

llm-hallucination-survey

<img src="https://img.shields.io/badge/Version-1.0-blue.svg" alt="Version"> <img src="https://img.shields.io/github/stars/HillZhang1999/llm-hallucination-survey?color=yellow" alt="Stars"> <img src="https://img.shields.io/github/issues/HillZhang1999/llm-hallucination-survey?color=red" alt="Issues">

Hallucination refers to the generated content that while seemingly plausible, deviates from user input (input-conflicting), previously generated context (context-conflicting), or factual knowledge (fact-conflicting).

<div align="center"> <img src="figures/hallucination_example.png" alt="LLM evaluation" width="300"><br> </div></br> This issue significantly undermines the reliability of LLMs in real-world scenarios.

📰News

😎 We have uploaded a comprehensive survey about the hallucination issue within the context of large language models, which discussed the evaluation, explanation, and mitigation. Check it out!

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models

If you think our survey is helpful, please kindly cite our paper:

@article{zhang2023hallucination,
      title={Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models}, 
      author={Zhang, Yue and Li, Yafu and Cui, Leyang and Cai, Deng and Liu, Lemao and Fu, Tingchen and Huang, Xinting and Zhao, Enbo and Zhang, Yu and Chen, Yulong and Wang, Longyue and Luu, Anh Tuan and Bi, Wei and Shi, Freda and Shi, Shuming},
      journal={arXiv preprint arXiv:2309.01219},
      year={2023}
}

🚀Table of Content

🔍Evaluation of LLM Hallucination

Input-conflicting Hallucination

This kind of hallucination denotes the model response deviates from the user input, including task instruction and task input. This kind of hallucination has been widely studied in some traditional NLG tasks, such as:

  • Machine Translation:

    • Hallucinations in Neural Machine TranslationDownload Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, David Sussillo [paper] 2018.9
    • Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation Nuno M. Guerreiro, Elena Voita, André F.T. Martins [paper] 2022.8
    • Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better David Dale, Elena Voita, Loïc Barrault, Marta R. Costa-jussà [paper] 2022.12
    • HalOmi: A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation David Dale, Elena Voita, Janice Lam, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Loïc Barrault, Marta R. Costa-jussà [paper] 2023.05
  • Data-to-text:

    • Controlling Hallucinations at Word Level in Data-to-Text Generation Clément Rebuffel, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella Cancelliere, Patrick Gallinari[paper] 2021.2
    • On Hallucination and Predictive Uncertainty in Conditional Language Generation Yijun Xiao, William Yang Wang[paper] 2021.3
    • Faithful Low-Resource Data-to-Text Generation through Cycle Training Zhuoer Wang, Marcus Collins, Nikhita Vedula, Simone Filice, Shervin Malmasi, Oleg Rokhlenko[paper] 2023.7
  • Summarization:

    • On Faithfulness and Factuality in Abstractive Summarization Joshua Maynez, Shashi Narayan, Bernd Bohnet, Ryan McDonald[paper] 2020.5
    • Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization Meng Cao, Yue Dong, Jackie Chi Kit Cheung[paper] 2021.9
    • Summarization is (Almost) Dead Xiao Pu, Mingqi Gao, Xiaojun Wan[paper] 2023.9
    • Hallucination Reduction in Long Input Text Summarization Tohida Rehman, Ronit Mandal, Abhishek Agarwal, Debarshi Kumar Sanyal[paper] 2023.9
    • Lighter, yet More Faithful: Investigating Hallucinations in Pruned Large Language Models for Abstractive Summarization George Chrysostomou, Zhixue Zhao, Miles Williams, Nikolaos Aletras[paper] 2023.11
    • TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization Liyan Tang, Igor Shalyminov, Amy Wing-mei Wong, Jon Burnsky, Jake W. Vincent, Yu'an Yang, Siffi Singh, Song Feng, Hwanjun Song, Hang Su, Lijia Sun, Yi Zhang, Saab Mansour, Kathleen McKeown[paper] 2024.02
  • Dialogue:

    • Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding Nouha Dziri, Andrea Madotto, Osmar Zaiane, Avishek Joey Bose[paper] 2021.4
    • RHO: Reducing Hallucination in Open-domain Dialogues with Knowledge Grounding Ziwei Ji, Zihan Liu, Nayeon Lee, Tiezheng Yu, Bryan Wilie, Min Zeng, Pascale Fung[paper] 2023.7
    • DiaHalu: A Dialogue-level Hallucination Evaluation Benchmark for Large Language Models Kedi Chen, Qin Chen, Jie Zhou, Yishen He, Liang He[paper] 2024.3
  • Question Answering:

    • Entity-Based Knowledge Conflicts in Question Answering Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, Sameer Singh[paper] 2021.9
    • Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, Siva Reddy [paper] 2023.7

Context-conflicting Hallucination

This kind of hallucination means the generated content exhibits self-contradiction, i.e., conflicts with previously generated content. Here are some preliminary studies in this direction:

  1. Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in Dialogue Generation Leyang Cui, Yu Wu, Shujie Liu, Yue Zhang[paper] 2021.9

  2. A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, Bill Dolan[paper] 2022.5 (not only limited to context-conflicting type)

  3. Large Language Models Can Be Easily Distracted by Irrelevant Context Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael Schärli, Denny Zhou[paper] 2023.2

  4. HistAlign: Improving Context Dependency in Language Generation by Aligning with History David Wan, Shiyue Zhang, Mohit Bansal[paper] 2023.5

  5. Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation Niels Mündler, Jingxuan He, Slobodan Jenko, Martin Vechev [paper] 2023.5

Fact-conflicting Hallucination

This kind of hallucination means the generated content conflicts with established facts. This kind of hallucination is challenging and important for practical applications of LLMs, so it has been widely studied in recent work.

  1. TruthfulQA: Measuring How Models Mimic Human Falsehoods Stephanie Lin, Jacob Hilton, Owain Evans [paper] 2022.5

  2. A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, Bill Dolan [paper] 2022.5

  3. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, Pascale Fung [paper] 2023.2

  4. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, Ji-Rong Wen [paper] 2023.5

  5. Automatic Evaluation of Attribution by Large Language Models Xiang Yue, Boshi Wang, Kai Zhang, Ziru Chen, Yu Su, Huan Sun [paper] 2023.5

  6. Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, Yu Su [paper] 2023.5

  7. LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond Philippe Laban, Wojciech Kryściński, Divyansh Agarwal, Alexander R. Fabbri, Caiming Xiong, Shafiq Joty, Chien-Sheng Wu [paper] 2023.5

  8. Evaluating the Factual Consistency of Large Language Models Through News Summarization Derek Tam, Anisha Mascarenhas, Shiyue Zhang, Sarah Kwan, Mohit Bansal, Colin Raffel [paper] 2023.5

  9. Methods for Measuring, Updating, and Visualizing Factual Beliefs in Language Models Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit Bansal, Srinivasan Iyer [paper] 2023.5

  10. How Language Model Hallucinations Can Snowball Muru Zhang, Ofir Press, William Merrill, Alisa Liu, Noah A. Smith [paper] 2023.5

  11. Evaluating Factual Consistency of Texts with Semantic Role Labeling Jing Fan, Dennis Aumiller, Michael Gertz [paper] 2023.5

  12. FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, Hannaneh Hajishirzi [paper] 2023.5

  13. Measuring and Modifying Factual Knowledge in Large Language Models Pouya Pezeshkpour [paper] 2023.6

  14. KoLA: Carefully Benchmarking World Knowledge of Large Language Models Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zheyuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, Juanzi Li [paper] 2023.6

  15. Generating Benchmarks for Factuality Evaluation of Language Models Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin Leyton-Brown, Amnon Shashua, Yoav Shoham [paper] 2023.7

  16. Fact-Checking of AI-Generated Reports Razi Mahmood, Ge Wang, Mannudeep Kalra, Pingkun Yan [paper] 2023.7

  17. Med-HALT: Medical Domain Hallucination Test for Large Language Models Logesh Kumar Umapathi, Ankit Pal, Malaikannan Sankarasubbu [paper] 2023.7

  18. Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts

    Fan Gao, Hang Jiang, Moritz Blum, Jinghui Lu, Yuang Jiang, Irene Li [paper] 2023.8

  19. ChatGPT Hallucinates when Attributing Answers Guido Zuccon, Bevan Koopman, Razia Shaik [paper] 2023.9

  20. BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models *Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, Ji-Rong

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多