我们提出了一种参数高效的微调(PEFT)方法,称为Pri主奇异值和奇异向量A适应(PiSSA),该方法优化关键的奇异值和向量,同时冻结"噪声"部分。相比之下,LoRA冻结原始矩阵并更新"噪声"。这种区别使得PiSSA能够比LoRA收敛得更快,并最终获得更好的性能。在五个常见的基准测试中,PiSSA在使用完全相同的设置(除了不同的初始化)的情况下,在所有测试中都优于LoRA。在GSM8K上,使用PiSSA微调的Mistral-7B达到了72.86%的准确率,比LoRA的67.7%高出5.16%。 由于架构相同,PiSSA继承了LoRA的许多优点,如参数效率和与量化的兼容性。 此外,PiSSA将LLaMA 2-7B的4位量化误差减少了18.97%,显著提高了微调性能。在GSM8K基准测试中,PiSSA达到了49.13%的准确率,超过了QLoRA的39.8%和LoftQ的40.71%。 利用快速SVD技术,PiSSA的初始化只需几秒钟,将LoRA切换到PiSSA的成本几乎可以忽略不计。
通 过pip安装PiSSA:
conda create -n pissa python=3.10
conda activate pissa
conda install nvidia/label/cuda-12.1.0::cuda-toolkit
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -r requirements.txt
pip install flash-attn --no-build-isolation
我们使用的所有数据集都可以在数据集公开获取。
PiSSA初始化的模型在模型上共享,以便于重复使用。它们保留了与原始模型相同的输入和输出,但被分为残差模型和PiSSA适配器,以实现更有效的微调。
PiSSA | QPiSSA | |
---|---|---|
LLaMA-2-7B | r128 | r16,32,64,128 |
LLaMA-3-8B | r16,32,64,128 | r64,128 |
LLaMA-3-8B-Instruct | r16,32,64,128 | -- |
LLaMA-3-70B | -- | r64,128 |
LLaMA-3-70B-Instruct | -- | r128 |
Qwen2-7B | r128 | r128 |
Qwen2-7B-Instruct | r128 | r128 |
Qwen2-72B | -- | r64,128 |
Qwen2-72B-Instruct | -- | r64,128 |
运行以下脚本将自动下载数据集和模型,然后开始训练:
sh scripts/run_full_finetune.sh
sh scripts/lora.sh
sh scripts/pissa.sh
sh scripts/loftq.sh
sh scripts/qlora.sh
sh scripts/qpissa.sh
要评估您微调模型的性能,请按照fxmeng/pissa-evaluation-code中的说明进行操作。
我们建议直接从Hugging Face Collections下载分解后的模型,而不是每次都执行SVD。 如果现有模型不能满足您的需求,可以对预训练模型应用PiSSA初始化,并将分解后的模型本地存储:
import torch import os from peft import LoraConfig, get_peft_model from transformers import AutoTokenizer, AutoModelForCausalLM MODEL_ID = "meta-llama/Llama-2-7b-hf" model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) tokenizer.pad_token_id = tokenizer.eos_token_id lora_config = LoraConfig( # init_lora_weights="pissa", # 将初始化方法配置为"pissa",这可能需要几分钟来对预训练模型执行SVD。 init_lora_weights="pissa_niter_4", # 使用快速SVD初始化PiSSA,只需几秒钟即可完成。 r=128, lora_alpha=128, lora_dropout=0, # 由于PiSSA适配器的组成部分是主要奇异值和向量,dropout应设置为0以避免随机丢弃。 target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], task_type="CAUSAL_LM", ) peft_model = get_peft_model(model, lora_config) peft_model.print_trainable_parameters() OUTPUT_DIR="PiSSA-Llama-2-7b-hf-r128" # 保存PiSSA模块: peft_model.peft_config["default"].init_lora_weights = True # 重要 peft_model.save_pretrained(os.path.join(OUTPUT_DIR, "pissa_init")) # 保存残差模型: peft_model = peft_model.unload() peft_model.save_pretrained(OUTPUT_DIR) # 保存分词器: tokenizer.save_pretrained(OUTPUT_DIR)
加载预处理过的模型并在IMDB数据集上进行微调:
from trl import SFTTrainer from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel MODEL_ID = "PiSSA-Llama-2-7b-hf-r128" residual_model = AutoModelForCausalLM.from_pretrained(MODEL_ID,device_map="auto") model = PeftModel.from_pretrained(residual_model, MODEL_ID, subfolder = "pissa_init", is_trainable=True) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) dataset = load_dataset("imdb", split="train[:1%]") # 仅使用1%的数据集 trainer = SFTTrainer( model=peft_model, train_dataset=dataset, dataset_text_field="text", max_seq_length=128, tokenizer=tokenizer, ) trainer.train() peft_model.save_pretrained("pissa-llama-2-7b-ft")
使用peft_model.save_pretrained
时,如果path_initial_model_for_weight_conversion=None
,会保存微调后的矩阵$A$和$B$,应与残差模型结合使用。然而,当指定path_initial_model_for_weight_conversion="pissa_init_dir"
时,保存函数会通过$\Delta W = A B - A_0 B_0 = [A | A_0] [B | -B_0]^T=A^{'}B^{'}$将PiSSA转换为LoRA。这种转换使得可以在标准基础模型之上加载LoRA:
import torch from peft import PeftModel from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto" ) # 在此步骤中不执行SVD,基础模型保持不变。 peft_model = PeftModel.from_pretrained(model, "pissa-llama-2-7b-lora")
使用转换后的LoRA不需要修改基础模型的参数。当同时需要多个转换后的LoRA时,每个适配器独立运行而不会相互干扰,允许自由删除或添加适配器。
@article{meng2024pissa,
title={Pissa: Principal singular values and singular vectors adaptation of large language models},
author={Meng, Fanxu and Wang, Zhaohui and Zhang, Muhan},
journal={arXiv preprint arXiv:2404.02948},
year={2024}
}
2024年5月27日, LoRA-XS: 使用极少参数的低秩适配 对主要奇异值和奇异向量进行基础适配。
2024年5月30日, SVFT: 使用奇异向量的参数高效微调 冻结奇异向量,同时以稀疏方式微调奇异值。
2024年6月3日, OLoRA: 大型语言模型的正交低秩适配, 利用QR分解进行正交矩阵初始化。
2024年6月7日, CorDA: 大型语言模型的上下文导向分解适配, 通过上下文导向分解利用知识保留适配和指令预览适配。
2024年6月7日, MiLoRA: 利用次要奇异分量进行参数高效的LLM微调, 次要奇异分量适配。
2024年6月18日, LaMDA: 通过谱分解的低维适配进行大型模型微调 对主要奇异值和奇异向量进行基础适配。
2024年7月6日, LoRA-GA: 具有梯度近似的低秩适配 在第一步对齐低秩矩阵乘积的梯度与全量微调的梯度。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号