clean-fid

clean-fid

准确评估生成模型的标准化指标库

clean-fid是一个用于评估生成模型的开源工具库,致力于解决FID计算中的不一致问题。通过精确处理图像重采样和压缩等细节,该库确保了不同方法、论文和团队之间FID分数的可比性。clean-fid支持计算FID和KID指标,提供多个常用数据集的预计算统计数据,操作简便。它旨在为生成模型评估提供标准化和可靠的解决方案,提高了评估结果的准确性和可重复性。

生成模型评估FID图像处理数据集统计clean-fidGithub开源项目

clean-fid for Evaluating Generative Models

<br> <p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/cleanfid_demo_folders.gif" /> </p>

Downloads Downloads

Project | Paper | Slides | Colab-FID | Colab-Resize | Leaderboard Tables <br> Quick start: Calculate FID | Calculate KID

[New] Computing the FID using CLIP features [Kynkäänniemi et al, 2022] is now supported. See here for more details.

The FID calculation involves many steps that can produce inconsistencies in the final metric. As shown below, different implementations use different low-level image quantization and resizing functions, the latter of which are often implemented incorrectly.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/resize_circle.png" width="800" /> </p>

We provide an easy-to-use library to address the above issues and make the FID scores comparable across different methods, papers, and groups.

FID Steps


Corresponding Manuscript

On Aliased Resizing and Surprising Subtleties in GAN Evaluation <br> Gaurav Parmar, Richard Zhang, Jun-Yan Zhu<br> CVPR, 2022 <br> CMU and Adobe

If you find this repository useful for your research, please cite the following work.

@inproceedings{parmar2021cleanfid,
  title={On Aliased Resizing and Surprising Subtleties in GAN Evaluation},
  author={Parmar, Gaurav and Zhang, Richard and Zhu, Jun-Yan},
  booktitle={CVPR},
  year={2022}
}

<br>

Aliased Resizing Operations <br>

The definitions of resizing functions are mathematical and <em>should never be a function of the library being used</em>. Unfortunately, implementations differ across commonly-used libraries. They are often implemented incorrectly by popular libraries. Try out the different resizing implementations in the Google colab notebook here.

<img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/resize_circle_extended.png" width="800" /> <br>

The inconsistencies among implementations can have a drastic effect of the evaluations metrics. The table below shows that FFHQ dataset images resized with bicubic implementation from other libraries (OpenCV, PyTorch, TensorFlow, OpenCV) have a large FID score (≥ 6) when compared to the same images resized with the correctly implemented PIL-bicubic filter. Other correctly implemented filters from PIL (Lanczos, bilinear, box) all result in relatively smaller FID score (≤ 0.75). Note that since TF 2.0, the new flag antialias (default: False) can produce results close to PIL. However, it was not used in the existing TF-FID repo and set as False by default.

<p align="center"><img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/table_resize_sc.png" width="500" /></p>

JPEG Image Compression

Image compression can have a surprisingly large effect on FID. Images are perceptually indistinguishable from each other but have a large FID score. The FID scores under the images are calculated between all FFHQ images saved using the corresponding JPEG format and the PNG format.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/jpeg_effects.png" width="800" /> </p>

Below, we study the effect of JPEG compression for StyleGAN2 models trained on the FFHQ dataset (left) and LSUN outdoor Church dataset (right). Note that LSUN dataset images were collected with JPEG compression (quality 75), whereas FFHQ images were collected as PNG. Interestingly, for LSUN dataset, the best FID score (3.48) is obtained when the generated images are compressed with JPEG quality 87.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/jpeg_plots.png" width="800" /> </p>

Quick Start

  • install the library
    pip install clean-fid
    

Computing FID

  • Compute FID between two image folders
    from cleanfid import fid
    score = fid.compute_fid(fdir1, fdir2)
    
  • Compute FID between one folder of images and pre-computed datasets statistics (e.g., FFHQ)
    from cleanfid import fid
    score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=1024, dataset_split="trainval70k")
    
  • Compute FID using a generative model and pre-computed dataset statistics:
    from cleanfid import fid
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    score = fid.compute_fid(gen=gen, dataset_name="FFHQ",
            dataset_res=256, num_gen=50_000, dataset_split="trainval70k")
    

Computing CLIP-FID

To use the CLIP features when computing the FID [Kynkäänniemi et al, 2022], specify the flag model_name="clip_vit_b_32"

  • e.g. to compute the CLIP-FID between two folders of images use the following commands.
    from cleanfid import fid
    score = fid.compute_fid(fdir1, fdir2, mode="clean", model_name="clip_vit_b_32")
    

Computing KID

The KID score can be computed using a similar interface as FID. The dataset statistics for KID are only precomputed for smaller datasets AFHQ, BreCaHAD, and MetFaces.

  • Compute KID between two image folders
    from cleanfid import fid
    score = fid.compute_kid(fdir1, fdir2)
    
  • Compute KID between one folder of images and pre-computed datasets statistics
    from cleanfid import fid
    score = fid.compute_kid(fdir1, dataset_name="brecahad", dataset_res=512, dataset_split="train")
    
  • Compute KID using a generative model and pre-computed dataset statistics:
    from cleanfid import fid
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    score = fid.compute_kid(gen=gen, dataset_name="brecahad", dataset_res=512, num_gen=50_000, dataset_split="train")
    

Supported Precomputed Datasets

We provide precompute statistics for the following commonly used configurations. Please contact us if you want to add statistics for your new datasets.

TaskDatasetResolutionReference Split# Reference Imagesmode
Image Generationcifar1032train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationcifar1032test10,000clean, legacy_tensorflow, legacy_pytorch
Image Generationffhq1024, 256trainval50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationffhq1024, 256trainval70k70,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_church256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_church256trainfull126,227clean
Image Generationlsun_horse256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_horse256trainfull2,000,340clean
Image Generationlsun_cat256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_cat256trainfull1,657,264clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_cat512train5153clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_dog512train4739clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_wild512train4738clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationbrecahad512train1944clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationmetfaces1024train1336clean, legacy_tensorflow, legacy_pytorch
Image to Imagehorse2zebra256test140clean, legacy_tensorflow, legacy_pytorch
Image to Imagecat2dog256test500clean, legacy_tensorflow, legacy_pytorch

Using precomputed statistics In order to compute the FID score with the precomputed dataset statistics, use the corresponding options. For instance, to compute the clean-fid score on generated 256x256 FFHQ images use the command:

fid_score = fid.compute_fid(fdir1, dataset_name="ffhq", dataset_res=256,  mode="clean", dataset_split="trainval70k")

Create Custom Dataset Statistics

  • dataset_path: folder where the dataset images are stored

  • custom_name: name to be used for the statistics

  • Generating custom statistics (saved to local cache)

    from cleanfid import fid
    fid.make_custom_stats(custom_name, dataset_path, mode="clean")
    
  • Using the generated custom statistics

    from cleanfid import fid
    score = fid.compute_fid("folder_fake", dataset_name=custom_name,
              mode="clean", dataset_split="custom")
    
  • Removing the custom stats

    from cleanfid import fid
    fid.remove_custom_stats(custom_name, mode="clean")
    
  • Check if a custom statistic already exists

    from cleanfid import fid
    fid.test_stats_exists(custom_name, mode)
    

Backwards Compatibility

We provide two flags to reproduce the legacy FID score.

  • mode="legacy_pytorch" <br> This flag is equivalent to using the popular PyTorch FID implementation provided here <br> The difference between using clean-fid with this option and code is ~2e-06 <br> See doc for how the methods are compared

  • mode="legacy_tensorflow" <br> This flag is equivalent to using the official implementation of FID released by the authors. <br> The difference between using clean-fid with this option and code is ~2e-05 <br> See doc for detailed steps for how the methods are compared


Building clean-fid locally from source

python setup.py bdist_wheel
pip install dist/*

CleanFID Leaderboard for common tasks

We compute the FID scores using the corresponding methods used in the original papers and using the Clean-FID proposed here. All values are computed using 10 evaluation runs. We provide an API to query the results shown in the tables below directly from the pip package.

If you would like to add new numbers and models to our leaderboard, feel free to contact us.

CIFAR-10 (few shot)

The test set is used as the reference distribution and compared to 10k generated images.

100% data (unconditional)

ModelLegacy-FID<br>(reported)Legacy-FID<br>(reproduced)Clean-FID
stylegan2 (+ada + tuning) [Karras et al, 2020]- †- †8.20 ± 0.10
stylegan2 (+ada) [Karras et al, 2020]- †- †9.26 ± 0.06
stylegan2 (diff-augment) [Zhao et al, 2020] [ckpt]9.899.90 ± 0.0910.85 ± 0.10
stylegan2 (mirror-flips) [Karras et al, 2020] [ckpt]11.0711.07 ± 0.1012.96 ± 0.07
stylegan2 (without-flips) [Karras et al, 2020]- †- †14.53 ± 0.13
AutoGAN (config A) [Gong et al, 2019]- †- †21.18 ± 0.12
AutoGAN (config B) [[Gong et al,

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多