clean-fid

clean-fid

准确评估生成模型的标准化指标库

clean-fid是一个用于评估生成模型的开源工具库,致力于解决FID计算中的不一致问题。通过精确处理图像重采样和压缩等细节,该库确保了不同方法、论文和团队之间FID分数的可比性。clean-fid支持计算FID和KID指标,提供多个常用数据集的预计算统计数据,操作简便。它旨在为生成模型评估提供标准化和可靠的解决方案,提高了评估结果的准确性和可重复性。

生成模型评估FID图像处理数据集统计clean-fidGithub开源项目

clean-fid for Evaluating Generative Models

<br> <p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/cleanfid_demo_folders.gif" /> </p>

Downloads Downloads

Project | Paper | Slides | Colab-FID | Colab-Resize | Leaderboard Tables <br> Quick start: Calculate FID | Calculate KID

[New] Computing the FID using CLIP features [Kynkäänniemi et al, 2022] is now supported. See here for more details.

The FID calculation involves many steps that can produce inconsistencies in the final metric. As shown below, different implementations use different low-level image quantization and resizing functions, the latter of which are often implemented incorrectly.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/resize_circle.png" width="800" /> </p>

We provide an easy-to-use library to address the above issues and make the FID scores comparable across different methods, papers, and groups.

FID Steps


Corresponding Manuscript

On Aliased Resizing and Surprising Subtleties in GAN Evaluation <br> Gaurav Parmar, Richard Zhang, Jun-Yan Zhu<br> CVPR, 2022 <br> CMU and Adobe

If you find this repository useful for your research, please cite the following work.

@inproceedings{parmar2021cleanfid,
  title={On Aliased Resizing and Surprising Subtleties in GAN Evaluation},
  author={Parmar, Gaurav and Zhang, Richard and Zhu, Jun-Yan},
  booktitle={CVPR},
  year={2022}
}

<br>

Aliased Resizing Operations <br>

The definitions of resizing functions are mathematical and <em>should never be a function of the library being used</em>. Unfortunately, implementations differ across commonly-used libraries. They are often implemented incorrectly by popular libraries. Try out the different resizing implementations in the Google colab notebook here.

<img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/resize_circle_extended.png" width="800" /> <br>

The inconsistencies among implementations can have a drastic effect of the evaluations metrics. The table below shows that FFHQ dataset images resized with bicubic implementation from other libraries (OpenCV, PyTorch, TensorFlow, OpenCV) have a large FID score (≥ 6) when compared to the same images resized with the correctly implemented PIL-bicubic filter. Other correctly implemented filters from PIL (Lanczos, bilinear, box) all result in relatively smaller FID score (≤ 0.75). Note that since TF 2.0, the new flag antialias (default: False) can produce results close to PIL. However, it was not used in the existing TF-FID repo and set as False by default.

<p align="center"><img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/table_resize_sc.png" width="500" /></p>

JPEG Image Compression

Image compression can have a surprisingly large effect on FID. Images are perceptually indistinguishable from each other but have a large FID score. The FID scores under the images are calculated between all FFHQ images saved using the corresponding JPEG format and the PNG format.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/jpeg_effects.png" width="800" /> </p>

Below, we study the effect of JPEG compression for StyleGAN2 models trained on the FFHQ dataset (left) and LSUN outdoor Church dataset (right). Note that LSUN dataset images were collected with JPEG compression (quality 75), whereas FFHQ images were collected as PNG. Interestingly, for LSUN dataset, the best FID score (3.48) is obtained when the generated images are compressed with JPEG quality 87.

<p align="center"> <img src="https://raw.githubusercontent.com/GaParmar/clean-fid/main/docs/images/jpeg_plots.png" width="800" /> </p>

Quick Start

  • install the library
    pip install clean-fid
    

Computing FID

  • Compute FID between two image folders
    from cleanfid import fid
    score = fid.compute_fid(fdir1, fdir2)
    
  • Compute FID between one folder of images and pre-computed datasets statistics (e.g., FFHQ)
    from cleanfid import fid
    score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=1024, dataset_split="trainval70k")
    
  • Compute FID using a generative model and pre-computed dataset statistics:
    from cleanfid import fid
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    score = fid.compute_fid(gen=gen, dataset_name="FFHQ",
            dataset_res=256, num_gen=50_000, dataset_split="trainval70k")
    

Computing CLIP-FID

To use the CLIP features when computing the FID [Kynkäänniemi et al, 2022], specify the flag model_name="clip_vit_b_32"

  • e.g. to compute the CLIP-FID between two folders of images use the following commands.
    from cleanfid import fid
    score = fid.compute_fid(fdir1, fdir2, mode="clean", model_name="clip_vit_b_32")
    

Computing KID

The KID score can be computed using a similar interface as FID. The dataset statistics for KID are only precomputed for smaller datasets AFHQ, BreCaHAD, and MetFaces.

  • Compute KID between two image folders
    from cleanfid import fid
    score = fid.compute_kid(fdir1, fdir2)
    
  • Compute KID between one folder of images and pre-computed datasets statistics
    from cleanfid import fid
    score = fid.compute_kid(fdir1, dataset_name="brecahad", dataset_res=512, dataset_split="train")
    
  • Compute KID using a generative model and pre-computed dataset statistics:
    from cleanfid import fid
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    score = fid.compute_kid(gen=gen, dataset_name="brecahad", dataset_res=512, num_gen=50_000, dataset_split="train")
    

Supported Precomputed Datasets

We provide precompute statistics for the following commonly used configurations. Please contact us if you want to add statistics for your new datasets.

TaskDatasetResolutionReference Split# Reference Imagesmode
Image Generationcifar1032train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationcifar1032test10,000clean, legacy_tensorflow, legacy_pytorch
Image Generationffhq1024, 256trainval50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationffhq1024, 256trainval70k70,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_church256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_church256trainfull126,227clean
Image Generationlsun_horse256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_horse256trainfull2,000,340clean
Image Generationlsun_cat256train50,000clean, legacy_tensorflow, legacy_pytorch
Image Generationlsun_cat256trainfull1,657,264clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_cat512train5153clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_dog512train4739clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationafhq_wild512train4738clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationbrecahad512train1944clean, legacy_tensorflow, legacy_pytorch
Few Shot Generationmetfaces1024train1336clean, legacy_tensorflow, legacy_pytorch
Image to Imagehorse2zebra256test140clean, legacy_tensorflow, legacy_pytorch
Image to Imagecat2dog256test500clean, legacy_tensorflow, legacy_pytorch

Using precomputed statistics In order to compute the FID score with the precomputed dataset statistics, use the corresponding options. For instance, to compute the clean-fid score on generated 256x256 FFHQ images use the command:

fid_score = fid.compute_fid(fdir1, dataset_name="ffhq", dataset_res=256,  mode="clean", dataset_split="trainval70k")

Create Custom Dataset Statistics

  • dataset_path: folder where the dataset images are stored

  • custom_name: name to be used for the statistics

  • Generating custom statistics (saved to local cache)

    from cleanfid import fid
    fid.make_custom_stats(custom_name, dataset_path, mode="clean")
    
  • Using the generated custom statistics

    from cleanfid import fid
    score = fid.compute_fid("folder_fake", dataset_name=custom_name,
              mode="clean", dataset_split="custom")
    
  • Removing the custom stats

    from cleanfid import fid
    fid.remove_custom_stats(custom_name, mode="clean")
    
  • Check if a custom statistic already exists

    from cleanfid import fid
    fid.test_stats_exists(custom_name, mode)
    

Backwards Compatibility

We provide two flags to reproduce the legacy FID score.

  • mode="legacy_pytorch" <br> This flag is equivalent to using the popular PyTorch FID implementation provided here <br> The difference between using clean-fid with this option and code is ~2e-06 <br> See doc for how the methods are compared

  • mode="legacy_tensorflow" <br> This flag is equivalent to using the official implementation of FID released by the authors. <br> The difference between using clean-fid with this option and code is ~2e-05 <br> See doc for detailed steps for how the methods are compared


Building clean-fid locally from source

python setup.py bdist_wheel
pip install dist/*

CleanFID Leaderboard for common tasks

We compute the FID scores using the corresponding methods used in the original papers and using the Clean-FID proposed here. All values are computed using 10 evaluation runs. We provide an API to query the results shown in the tables below directly from the pip package.

If you would like to add new numbers and models to our leaderboard, feel free to contact us.

CIFAR-10 (few shot)

The test set is used as the reference distribution and compared to 10k generated images.

100% data (unconditional)

ModelLegacy-FID<br>(reported)Legacy-FID<br>(reproduced)Clean-FID
stylegan2 (+ada + tuning) [Karras et al, 2020]- †- †8.20 ± 0.10
stylegan2 (+ada) [Karras et al, 2020]- †- †9.26 ± 0.06
stylegan2 (diff-augment) [Zhao et al, 2020] [ckpt]9.899.90 ± 0.0910.85 ± 0.10
stylegan2 (mirror-flips) [Karras et al, 2020] [ckpt]11.0711.07 ± 0.1012.96 ± 0.07
stylegan2 (without-flips) [Karras et al, 2020]- †- †14.53 ± 0.13
AutoGAN (config A) [Gong et al, 2019]- †- †21.18 ± 0.12
AutoGAN (config B) [[Gong et al,

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多