HighwayEnv

HighwayEnv

多场景自动驾驶模拟与决策训练环境

HighwayEnv是一个自动驾驶和决策任务模拟环境集。它包含高速公路、环岛、停车场和十字路口等多种场景,模拟真实驾驶情况。支持DQN、DDPG和MCTS等多种强化学习算法,便于研究人员开发和测试自动驾驶策略。该项目具有良好的可用性和扩展性,适用于自动驾驶研究和教学。

highway-env自动驾驶强化学习环境仿真决策系统Github开源项目

highway-env

build Documentation Status Downloads Codacy Badge GitHub contributors

A collection of environments for autonomous driving and tactical decision-making tasks, developed and maintained by Edouard Leurent.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway-env.gif?raw=true"><br/> <em>An episode of one of the environments available in highway-env.</em> </p>

Try it on Google Colab! Open In Colab

The environments

Highway

env = gymnasium.make("highway-v0")

In this task, the ego-vehicle is driving on a multilane highway populated with other vehicles. The agent's objective is to reach a high speed while avoiding collisions with neighbouring vehicles. Driving on the right side of the road is also rewarded.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway.gif?raw=true"><br/> <em>The highway-v0 environment.</em> </p>

A faster variant, highway-fast-v0 is also available, with a degraded simulation accuracy to improve speed for large-scale training.

Merge

env = gymnasium.make("merge-v0")

In this task, the ego-vehicle starts on a main highway but soon approaches a road junction with incoming vehicles on the access ramp. The agent's objective is now to maintain a high speed while making room for the vehicles so that they can safely merge in the traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/merge-env.gif?raw=true"><br/> <em>The merge-v0 environment.</em> </p>

Roundabout

env = gymnasium.make("roundabout-v0")

In this task, the ego-vehicle if approaching a roundabout with flowing traffic. It will follow its planned route automatically, but has to handle lane changes and longitudinal control to pass the roundabout as fast as possible while avoiding collisions.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/roundabout-env.gif?raw=true"><br/> <em>The roundabout-v0 environment.</em> </p>

Parking

env = gymnasium.make("parking-v0")

A goal-conditioned continuous control task in which the ego-vehicle must park in a given space with the appropriate heading.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/parking-env.gif?raw=true"><br/> <em>The parking-v0 environment.</em> </p>

Intersection

env = gymnasium.make("intersection-v0")

An intersection negotiation task with dense traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/intersection-env.gif?raw=true"><br/> <em>The intersection-v0 environment.</em> </p>

Racetrack

env = gymnasium.make("racetrack-v0")

A continuous control task involving lane-keeping and obstacle avoidance.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/racetrack-env.gif?raw=true"><br/> <em>The racetrack-v0 environment.</em> </p>

Examples of agents

Agents solving the highway-env environments are available in the eleurent/rl-agents and DLR-RM/stable-baselines3 repositories.

See the documentation for some examples and notebooks.

Deep Q-Network

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/dqn.gif?raw=true"><br/> <em>The DQN agent solving highway-v0.</em> </p>

This model-free value-based reinforcement learning agent performs Q-learning with function approximation, using a neural network to represent the state-action value function Q.

Deep Deterministic Policy Gradient

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ddpg.gif?raw=true"><br/> <em>The DDPG agent solving parking-v0.</em> </p>

This model-free policy-based reinforcement learning agent is optimized directly by gradient ascent. It uses Hindsight Experience Replay to efficiently learn how to solve a goal-conditioned task.

Value Iteration

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ttcvi.gif?raw=true"><br/> <em>The Value Iteration agent solving highway-v0.</em> </p>

The Value Iteration is only compatible with finite discrete MDPs, so the environment is first approximated by a finite-mdp environment using env.to_finite_mdp(). This simplified state representation describes the nearby traffic in terms of predicted Time-To-Collision (TTC) on each lane of the road. The transition model is simplistic and assumes that each vehicle will keep driving at a constant speed without changing lanes. This model bias can be a source of mistakes.

The agent then performs a Value Iteration to compute the corresponding optimal state-value function.

Monte-Carlo Tree Search

This agent leverages a transition and reward models to perform a stochastic tree search (Coulom, 2006) of the optimal trajectory. No particular assumption is required on the state representation or transition model.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/mcts.gif?raw=true"><br/> <em>The MCTS agent solving highway-v0.</em> </p>

Installation

pip install highway-env

Usage

import gymnasium as gym env = gym.make('highway-v0', render_mode='human') obs, info = env.reset() done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action)

Documentation

Read the documentation online.

Development Roadmap

Here is the roadmap for future development work.

Citing

If you use the project in your work, please consider citing it with:

@misc{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/eleurent/highway-env}}, }

List of publications & preprints using highway-env (please open a pull request to add missing entries):

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多