HighwayEnv

HighwayEnv

多场景自动驾驶模拟与决策训练环境

HighwayEnv是一个自动驾驶和决策任务模拟环境集。它包含高速公路、环岛、停车场和十字路口等多种场景,模拟真实驾驶情况。支持DQN、DDPG和MCTS等多种强化学习算法,便于研究人员开发和测试自动驾驶策略。该项目具有良好的可用性和扩展性,适用于自动驾驶研究和教学。

highway-env自动驾驶强化学习环境仿真决策系统Github开源项目

highway-env

build Documentation Status Downloads Codacy Badge GitHub contributors

A collection of environments for autonomous driving and tactical decision-making tasks, developed and maintained by Edouard Leurent.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway-env.gif?raw=true"><br/> <em>An episode of one of the environments available in highway-env.</em> </p>

Try it on Google Colab! Open In Colab

The environments

Highway

env = gymnasium.make("highway-v0")

In this task, the ego-vehicle is driving on a multilane highway populated with other vehicles. The agent's objective is to reach a high speed while avoiding collisions with neighbouring vehicles. Driving on the right side of the road is also rewarded.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway.gif?raw=true"><br/> <em>The highway-v0 environment.</em> </p>

A faster variant, highway-fast-v0 is also available, with a degraded simulation accuracy to improve speed for large-scale training.

Merge

env = gymnasium.make("merge-v0")

In this task, the ego-vehicle starts on a main highway but soon approaches a road junction with incoming vehicles on the access ramp. The agent's objective is now to maintain a high speed while making room for the vehicles so that they can safely merge in the traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/merge-env.gif?raw=true"><br/> <em>The merge-v0 environment.</em> </p>

Roundabout

env = gymnasium.make("roundabout-v0")

In this task, the ego-vehicle if approaching a roundabout with flowing traffic. It will follow its planned route automatically, but has to handle lane changes and longitudinal control to pass the roundabout as fast as possible while avoiding collisions.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/roundabout-env.gif?raw=true"><br/> <em>The roundabout-v0 environment.</em> </p>

Parking

env = gymnasium.make("parking-v0")

A goal-conditioned continuous control task in which the ego-vehicle must park in a given space with the appropriate heading.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/parking-env.gif?raw=true"><br/> <em>The parking-v0 environment.</em> </p>

Intersection

env = gymnasium.make("intersection-v0")

An intersection negotiation task with dense traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/intersection-env.gif?raw=true"><br/> <em>The intersection-v0 environment.</em> </p>

Racetrack

env = gymnasium.make("racetrack-v0")

A continuous control task involving lane-keeping and obstacle avoidance.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/racetrack-env.gif?raw=true"><br/> <em>The racetrack-v0 environment.</em> </p>

Examples of agents

Agents solving the highway-env environments are available in the eleurent/rl-agents and DLR-RM/stable-baselines3 repositories.

See the documentation for some examples and notebooks.

Deep Q-Network

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/dqn.gif?raw=true"><br/> <em>The DQN agent solving highway-v0.</em> </p>

This model-free value-based reinforcement learning agent performs Q-learning with function approximation, using a neural network to represent the state-action value function Q.

Deep Deterministic Policy Gradient

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ddpg.gif?raw=true"><br/> <em>The DDPG agent solving parking-v0.</em> </p>

This model-free policy-based reinforcement learning agent is optimized directly by gradient ascent. It uses Hindsight Experience Replay to efficiently learn how to solve a goal-conditioned task.

Value Iteration

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ttcvi.gif?raw=true"><br/> <em>The Value Iteration agent solving highway-v0.</em> </p>

The Value Iteration is only compatible with finite discrete MDPs, so the environment is first approximated by a finite-mdp environment using env.to_finite_mdp(). This simplified state representation describes the nearby traffic in terms of predicted Time-To-Collision (TTC) on each lane of the road. The transition model is simplistic and assumes that each vehicle will keep driving at a constant speed without changing lanes. This model bias can be a source of mistakes.

The agent then performs a Value Iteration to compute the corresponding optimal state-value function.

Monte-Carlo Tree Search

This agent leverages a transition and reward models to perform a stochastic tree search (Coulom, 2006) of the optimal trajectory. No particular assumption is required on the state representation or transition model.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/mcts.gif?raw=true"><br/> <em>The MCTS agent solving highway-v0.</em> </p>

Installation

pip install highway-env

Usage

import gymnasium as gym env = gym.make('highway-v0', render_mode='human') obs, info = env.reset() done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action)

Documentation

Read the documentation online.

Development Roadmap

Here is the roadmap for future development work.

Citing

If you use the project in your work, please consider citing it with:

@misc{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/eleurent/highway-env}}, }

List of publications & preprints using highway-env (please open a pull request to add missing entries):

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多