A collection of environments for autonomous driving and tactical decision-making tasks, developed and maintained by Edouard Leurent.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway-env.gif?raw=true"><br/> <em>An episode of one of the environments available in highway-env.</em> </p>env = gymnasium.make("highway-v0")
In this task, the ego-vehicle is driving on a multilane highway populated with other vehicles. The agent's objective is to reach a high speed while avoiding collisions with neighbouring vehicles. Driving on the right side of the road is also rewarded.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway.gif?raw=true"><br/> <em>The highway-v0 environment.</em> </p>A faster variant, highway-fast-v0 is also available, with a degraded simulation accuracy to improve speed for large-scale training.
env = gymnasium.make("merge-v0")
In this task, the ego-vehicle starts on a main highway but soon approaches a road junction with incoming vehicles on the access ramp. The agent's objective is now to maintain a high speed while making room for the vehicles so that they can safely merge in the traffic.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/merge-env.gif?raw=true"><br/> <em>The merge-v0 environment.</em> </p>env = gymnasium.make("roundabout-v0")
In this task, the ego-vehicle if approaching a roundabout with flowing traffic. It will follow its planned route automatically, but has to handle lane changes and longitudinal control to pass the roundabout as fast as possible while avoiding collisions.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/roundabout-env.gif?raw=true"><br/> <em>The roundabout-v0 environment.</em> </p>env = gymnasium.make("parking-v0")
A goal-conditioned continuous control task in which the ego-vehicle must park in a given space with the appropriate heading.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/parking-env.gif?raw=true"><br/> <em>The parking-v0 environment.</em> </p>env = gymnasium.make("intersection-v0")
An intersection negotiation task with dense traffic.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/intersection-env.gif?raw=true"><br/> <em>The intersection-v0 environment.</em> </p>env = gymnasium.make("racetrack-v0")
A continuous control task involving lane-keeping and obstacle avoidance.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/racetrack-env.gif?raw=true"><br/> <em>The racetrack-v0 environment.</em> </p>Agents solving the highway-env environments are available in the eleurent/rl-agents and DLR-RM/stable-baselines3 repositories.
See the documentation for some examples and notebooks.
This model-free value-based reinforcement learning agent performs Q-learning with function approximation, using a neural network to represent the state-action value function Q.
This model-free policy-based reinforcement learning agent is optimized directly by gradient ascent. It uses Hindsight Experience Replay to efficiently learn how to solve a goal-conditioned task.
The Value Iteration is only compatible with finite discrete MDPs, so the environment is first approximated by a finite-mdp environment using env.to_finite_mdp(). This simplified state representation describes the nearby traffic in terms of predicted Time-To-Collision (TTC) on each lane of the road. The transition model is simplistic and assumes that each vehicle will keep driving at a constant speed without changing lanes. This model bias can be a source of mistakes.
The agent then performs a Value Iteration to compute the corresponding optimal state-value function.
This agent leverages a transition and reward models to perform a stochastic tree search (Coulom, 2006) of the optimal trajectory. No particular assumption is required on the state representation or transition model.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/mcts.gif?raw=true"><br/> <em>The MCTS agent solving highway-v0.</em> </p>pip install highway-env
import gymnasium as gym env = gym.make('highway-v0', render_mode='human') obs, info = env.reset() done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action)
Read the documentation online.
Here is the roadmap for future development work.
If you use the project in your work, please consider citing it with:
@misc{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/eleurent/highway-env}}, }
List of publications & preprints using highway-env (please open a pull request to add missing entries):


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号