HighwayEnv

HighwayEnv

多场景自动驾驶模拟与决策训练环境

HighwayEnv是一个自动驾驶和决策任务模拟环境集。它包含高速公路、环岛、停车场和十字路口等多种场景,模拟真实驾驶情况。支持DQN、DDPG和MCTS等多种强化学习算法,便于研究人员开发和测试自动驾驶策略。该项目具有良好的可用性和扩展性,适用于自动驾驶研究和教学。

highway-env自动驾驶强化学习环境仿真决策系统Github开源项目

highway-env

build Documentation Status Downloads Codacy Badge GitHub contributors

A collection of environments for autonomous driving and tactical decision-making tasks, developed and maintained by Edouard Leurent.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway-env.gif?raw=true"><br/> <em>An episode of one of the environments available in highway-env.</em> </p>

Try it on Google Colab! Open In Colab

The environments

Highway

env = gymnasium.make("highway-v0")

In this task, the ego-vehicle is driving on a multilane highway populated with other vehicles. The agent's objective is to reach a high speed while avoiding collisions with neighbouring vehicles. Driving on the right side of the road is also rewarded.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway.gif?raw=true"><br/> <em>The highway-v0 environment.</em> </p>

A faster variant, highway-fast-v0 is also available, with a degraded simulation accuracy to improve speed for large-scale training.

Merge

env = gymnasium.make("merge-v0")

In this task, the ego-vehicle starts on a main highway but soon approaches a road junction with incoming vehicles on the access ramp. The agent's objective is now to maintain a high speed while making room for the vehicles so that they can safely merge in the traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/merge-env.gif?raw=true"><br/> <em>The merge-v0 environment.</em> </p>

Roundabout

env = gymnasium.make("roundabout-v0")

In this task, the ego-vehicle if approaching a roundabout with flowing traffic. It will follow its planned route automatically, but has to handle lane changes and longitudinal control to pass the roundabout as fast as possible while avoiding collisions.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/roundabout-env.gif?raw=true"><br/> <em>The roundabout-v0 environment.</em> </p>

Parking

env = gymnasium.make("parking-v0")

A goal-conditioned continuous control task in which the ego-vehicle must park in a given space with the appropriate heading.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/parking-env.gif?raw=true"><br/> <em>The parking-v0 environment.</em> </p>

Intersection

env = gymnasium.make("intersection-v0")

An intersection negotiation task with dense traffic.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/intersection-env.gif?raw=true"><br/> <em>The intersection-v0 environment.</em> </p>

Racetrack

env = gymnasium.make("racetrack-v0")

A continuous control task involving lane-keeping and obstacle avoidance.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/racetrack-env.gif?raw=true"><br/> <em>The racetrack-v0 environment.</em> </p>

Examples of agents

Agents solving the highway-env environments are available in the eleurent/rl-agents and DLR-RM/stable-baselines3 repositories.

See the documentation for some examples and notebooks.

Deep Q-Network

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/dqn.gif?raw=true"><br/> <em>The DQN agent solving highway-v0.</em> </p>

This model-free value-based reinforcement learning agent performs Q-learning with function approximation, using a neural network to represent the state-action value function Q.

Deep Deterministic Policy Gradient

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ddpg.gif?raw=true"><br/> <em>The DDPG agent solving parking-v0.</em> </p>

This model-free policy-based reinforcement learning agent is optimized directly by gradient ascent. It uses Hindsight Experience Replay to efficiently learn how to solve a goal-conditioned task.

Value Iteration

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/ttcvi.gif?raw=true"><br/> <em>The Value Iteration agent solving highway-v0.</em> </p>

The Value Iteration is only compatible with finite discrete MDPs, so the environment is first approximated by a finite-mdp environment using env.to_finite_mdp(). This simplified state representation describes the nearby traffic in terms of predicted Time-To-Collision (TTC) on each lane of the road. The transition model is simplistic and assumes that each vehicle will keep driving at a constant speed without changing lanes. This model bias can be a source of mistakes.

The agent then performs a Value Iteration to compute the corresponding optimal state-value function.

Monte-Carlo Tree Search

This agent leverages a transition and reward models to perform a stochastic tree search (Coulom, 2006) of the optimal trajectory. No particular assumption is required on the state representation or transition model.

<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/mcts.gif?raw=true"><br/> <em>The MCTS agent solving highway-v0.</em> </p>

Installation

pip install highway-env

Usage

import gymnasium as gym env = gym.make('highway-v0', render_mode='human') obs, info = env.reset() done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action)

Documentation

Read the documentation online.

Development Roadmap

Here is the roadmap for future development work.

Citing

If you use the project in your work, please consider citing it with:

@misc{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/eleurent/highway-env}}, }

List of publications & preprints using highway-env (please open a pull request to add missing entries):

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多