A collection of environments for autonomous driving and tactical decision-making tasks, developed and maintained by Edouard Leurent.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway-env.gif?raw=true"><br/> <em>An episode of one of the environments available in highway-env.</em> </p>env = gymnasium.make("highway-v0")
In this task, the ego-vehicle is driving on a multilane highway populated with other vehicles. The agent's objective is to reach a high speed while avoiding collisions with neighbouring vehicles. Driving on the right side of the road is also rewarded.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/highway.gif?raw=true"><br/> <em>The highway-v0 environment.</em> </p>A faster variant, highway-fast-v0 is also available, with a degraded simulation accuracy to improve speed for large-scale training.
env = gymnasium.make("merge-v0")
In this task, the ego-vehicle starts on a main highway but soon approaches a road junction with incoming vehicles on the access ramp. The agent's objective is now to maintain a high speed while making room for the vehicles so that they can safely merge in the traffic.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/merge-env.gif?raw=true"><br/> <em>The merge-v0 environment.</em> </p>env = gymnasium.make("roundabout-v0")
In this task, the ego-vehicle if approaching a roundabout with flowing traffic. It will follow its planned route automatically, but has to handle lane changes and longitudinal control to pass the roundabout as fast as possible while avoiding collisions.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/roundabout-env.gif?raw=true"><br/> <em>The roundabout-v0 environment.</em> </p>env = gymnasium.make("parking-v0")
A goal-conditioned continuous control task in which the ego-vehicle must park in a given space with the appropriate heading.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/parking-env.gif?raw=true"><br/> <em>The parking-v0 environment.</em> </p>env = gymnasium.make("intersection-v0")
An intersection negotiation task with dense traffic.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/intersection-env.gif?raw=true"><br/> <em>The intersection-v0 environment.</em> </p>env = gymnasium.make("racetrack-v0")
A continuous control task involving lane-keeping and obstacle avoidance.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/racetrack-env.gif?raw=true"><br/> <em>The racetrack-v0 environment.</em> </p>Agents solving the highway-env environments are available in the eleurent/rl-agents and DLR-RM/stable-baselines3 repositories.
See the documentation for some examples and notebooks.
This model-free value-based reinforcement learning agent performs Q-learning with function approximation, using a neural network to represent the state-action value function Q.
This model-free policy-based reinforcement learning agent is optimized directly by gradient ascent. It uses Hindsight Experience Replay to efficiently learn how to solve a goal-conditioned task.
The Value Iteration is only compatible with finite discrete MDPs, so the environment is first approximated by a finite-mdp environment using env.to_finite_mdp(). This simplified state representation describes the nearby traffic in terms of predicted Time-To-Collision (TTC) on each lane of the road. The transition model is simplistic and assumes that each vehicle will keep driving at a constant speed without changing lanes. This model bias can be a source of mistakes.
The agent then performs a Value Iteration to compute the corresponding optimal state-value function.
This agent leverages a transition and reward models to perform a stochastic tree search (Coulom, 2006) of the optimal trajectory. No particular assumption is required on the state representation or transition model.
<p align="center"> <img src="https://raw.githubusercontent.com/eleurent/highway-env/master/../gh-media/docs/media/mcts.gif?raw=true"><br/> <em>The MCTS agent solving highway-v0.</em> </p>pip install highway-env
import gymnasium as gym env = gym.make('highway-v0', render_mode='human') obs, info = env.reset() done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action)
Read the documentation online.
Here is the roadmap for future development work.
If you use the project in your work, please consider citing it with:
@misc{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/eleurent/highway-env}}, }
List of publications & preprints using highway-env (please open a pull request to add missing entries):


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言 、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号