roberta-large

roberta-large

大型英语预训练模型,适合多种任务优化

RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。

语言模型模型遮蔽语言建模GithubRoBERTaTransformer模型预训练模型Huggingface开源项目

RoBERTa大型模型简介

RoBERTa是一个基于英语语言的大型预训练模型,它使用了一种称为掩码语言模型(MLM)的目标进行训练。RoBERTa首次是在A Robustly Optimized BERT Pretraining Approach这篇论文中介绍,并发布在这个代码库中。这个模型对大小写敏感,例如它会区分“english”和“English”。

模型描述

RoBERTa是一种变压器模型,它通过自监督的方式在大规模的英语语料库上进行预训练。自监督学习意味着该模型只在未经人工标注的原始文本上训练,通过自动化过程生成输入和标签。这使得RoBERTa能够利用大量的公开数据进行训练。

该模型具体使用了掩码语言模型(MLM)的目标进行预训练。这个过程是,给定一个句子,模型随机地掩盖输入中15%的单词,然后让模型预测这些被掩盖的单词。与传统的递归神经网络(RNN)或类似GPT的自回归模型不同,RoBERTa可以学习句子的双向表示。

这种预训练方式使得模型可以学习到英语语言的内部表示,可以用于下游任务中的特征提取:例如,如果你有一个标注句子的数据集,可以使用BERT模型生成的特征作为输入来训练一个标准的分类器。

预期用途与限制

虽然可以使用RoBERTa模型进行掩码语言建模,但它主要是为了在下游任务中进行微调而设计的。用户可以访问模型中心查看各种任务的微调版本。

请注意,该模型主要针对使用整个(可能被掩盖的)句子作出决策的任务进行微调,例如序列分类、标记分类或问答。对于文本生成类任务,建议使用类似GPT2的模型。

如何使用

可以通过以下方式直接使用RoBERTa模型进行掩码语言建模:

from transformers import pipeline unmasker = pipeline('fill-mask', model='roberta-large') unmasker("Hello I'm a <mask> model.")

此外,也可以使用PyTorch或TensorFlow获取特定文本的特征:

PyTorch示例:

from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('roberta-large') model = RobertaModel.from_pretrained('roberta-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input)

TensorFlow示例:

from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('roberta-large') model = TFRobertaModel.from_pretrained('roberta-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input)

限制与偏见

RoBERTa的训练数据包含了大量未经筛选的互联网内容,这导致模型可能产生偏见的预测。例如:

from transformers import pipeline unmasker = pipeline('fill-mask', model='roberta-large') unmasker("The man worked as a <mask>.") unmasker("The woman worked as a <mask>.")

这些偏见同样会影响到该模型的所有微调版本。

训练数据

RoBERTa模型在五个数据集上进行了预训练:

  • BookCorpus:一个包含11,038本未出版书籍的语料库
  • 英文维基百科(不包括列表、表格和标题)
  • CC-News:包含了从2016年9月至2019年2月期间抓取的6300万篇英文新闻文章的数据集
  • OpenWebText:GPT-2使用的WebText数据集的开源重建版本
  • Stories:从CommonCrawl数据中提取出与Winograd模式相符的故事风格数据集

这些数据集共计160GB文本。

训练过程

文本使用字节版本的字节对编码(BPE)和50,000的词汇量进行标记。模型的输入为512个连续的标记,这些标记可以跨越文档。新文档的开始和结束分别用<s></s>标记。

对每个句子的掩码过程如下:

  • 掩盖15%的标记。
  • 在80%的情况下,掩盖的标记会被替换为<mask>
  • 在10%的情况下,掩盖的标记会被一个随机不同的标记代替。
  • 剩下的10%情况下,掩盖的标记保持不变。

不同于BERT,RoBERTa在预训练期间动态地进行掩盖(例如,在每个周期变化,而不是固定的)。

预训练

RoBERTa模型在1024个V100 GPU上以8000的批量大小和512的序列长度进行了500K步训练。优化器使用的是Adam,学习率为4e-4,\(\beta_{1} = 0.9\),\(\beta_{2} = 0.98\),\(\epsilon = 1e-6\),权重衰减为0.01,学习步骤在30,000步之前逐渐升温,并在之后线性衰减。

评估结果

当在下游任务上进行微调时,RoBERTa模型取得了以下结果:

Glue测试结果:

任务MNLIQQPQNLISST-2CoLASTS-BMRPCRTE
90.292.294.796.468.096.490.986.6

总之,RoBERTa模型表现出了优秀的性能,并且在下游任务中具有较强的适应能力。然而,由于其训练数据来源的多样性和可能的偏见,在实际应用中需谨慎对待。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多