Graph-Adversarial-Learning

Graph-Adversarial-Learning

图对抗学习攻防技术与研究进展综述

该项目是一个图对抗学习综合资源库,收录2017年至今的攻击、防御和鲁棒性认证相关论文。资源按字母、年份和会议分类,并提供代码实现汇总。内容涵盖图神经网络攻击方法、防御策略和稳定性研究,为图对抗学习研究提供重要参考。

图对抗学习图神经网络攻击方法防御策略论文综述Github开源项目

⚔🛡 Awesome Graph Adversarial Learning

<img src="https://img.shields.io/badge/Contributions-Welcome-278ea5" alt="Contrib"/> <img src="https://img.shields.io/badge/Number%20of%20Papers-416-FF6F00" alt="PaperNum"/>

<a class="toc" id="table-of-contents"></a>

<img width =500 height =300 src="imgs/wordcloud.png" >

This repository contains Attack-related papers, Defense-related papers, Robustness Certification papers, etc., ranging from 2017 to 2021. If you find this repo useful, please cite: A Survey of Adversarial Learning on Graph, arXiv'20, Link

@article{chen2020survey, title={A Survey of Adversarial Learning on Graph}, author={Chen, Liang and Li, Jintang and Peng, Jiaying and Xie, Tao and Cao, Zengxu and Xu, Kun and He, Xiangnan and Zheng, Zibin and Wu, Bingzhe}, journal={arXiv preprint arXiv:2003.05730}, year={2020} }

👀Quick Look

The papers in this repo are categorized or sorted:

| By Alphabet | By Year | By Venue | Papers with Code |

If you want to get a quick look at the recently updated papers in the repository (in 30 days), you can refer to 📍this.

⚔Attack

2023

💨 Back to Top

2022

💨 Back to Top

  • Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem, 📝WSDM, :octocat:Code
  • Inference Attacks Against Graph Neural Networks, 📝USENIX Security, :octocat:Code
  • Model Stealing Attacks Against Inductive Graph Neural Networks, 📝IEEE Symposium on Security and Privacy, :octocat:Code
  • Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, 📝WWW, :octocat:Code
  • Neighboring Backdoor Attacks on Graph Convolutional Network, 📝arXiv, :octocat:Code
  • Understanding and Improving Graph Injection Attack by Promoting Unnoticeability, 📝ICLR, :octocat:Code
  • Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs, 📝AAAI, :octocat:Code
  • More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks, 📝arXiv
  • Black-box Node Injection Attack for Graph Neural Networks, 📝arXiv, :octocat:Code
  • Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection, 📝arXiv
  • Projective Ranking-based GNN Evasion Attacks, 📝arXiv
  • GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation, 📝arXiv
  • Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization, 📝Asia CCS, :octocat:Code
  • Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees, 📝CVPR, :octocat:Code
  • Transferable Graph Backdoor Attack, 📝RAID, :octocat:Code
  • Adversarial Robustness of Graph-based Anomaly Detection, 📝arXiv
  • Label specificity attack: Change your label as I want, 📝IJIS
  • AdverSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph Neural Networks, 📝ICASSP
  • Surrogate Representation Learning with Isometric Mapping for Gray-box Graph Adversarial Attacks, 📝WSDM
  • Cluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝IJCAI, :octocat:Code
  • Label-Only Membership Inference Attack against Node-Level Graph Neural NetworksCluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝arXiv
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Are Gradients on Graph Structure Reliable in Gray-box Attacks?, 📝CIKM, :octocat:Code
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Graph Structural Attack by Perturbing Spectral Distance, 📝KDD
  • What Does the Gradient Tell When Attacking the Graph Structure, 📝arXiv
  • BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly Detection, 📝ICDM, :octocat:Code
  • Model Inversion Attacks against Graph Neural Networks, 📝TKDE
  • Sparse Vicious Attacks on Graph Neural Networks, 📝arXiv, :octocat:Code
  • Poisoning GNN-based Recommender Systems with Generative Surrogate-based Attacks, 📝ACM TIS
  • Dealing with the unevenness: deeper insights in graph-based attack and defense, 📝Machine Learning
  • Membership Inference Attacks Against Robust Graph Neural Network, 📝CSS
  • Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural Networks, 📝ICDM, :octocat:Code
  • Revisiting Item Promotion in GNN-based Collaborative Filtering: A Masked Targeted Topological Attack Perspective, 📝arXiv
  • Link-Backdoor: Backdoor Attack on Link Prediction via Node Injection, 📝arXiv, :octocat:Code
  • Private Graph Extraction via Feature Explanations, 📝arXiv
  • Towards Secrecy-Aware Attacks Against Trust Prediction in Signed Graphs, 📝arXiv
  • Camouflaged Poisoning Attack on Graph Neural Networks, 📝ICDM
  • LOKI: A Practical Data Poisoning Attack Framework against Next Item Recommendations, 📝TKDE
  • Adversarial for Social Privacy: A Poisoning Strategy to Degrade User Identity Linkage, 📝arXiv
  • Exploratory Adversarial Attacks on Graph Neural Networks for Semi-Supervised Node Classification, 📝Pattern Recognition
  • GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections, 📝arXiv, :octocat:Code
  • Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs, 📝arXiv
  • Are Defenses for Graph Neural Networks Robust?, 📝NeurIPS, :octocat:Code
  • Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation, 📝ECCV
  • Imperceptible Adversarial Attacks on Discrete-Time Dynamic Graph Models, 📝NeurIPS
  • Towards Reasonable Budget Allocation in Untargeted Graph Structure Attacks via Gradient Debias, 📝NeurIPS, :octocat:Code
  • Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks, 📝SecureComm

2021

💨 Back to Top

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多