Graph-Adversarial-Learning

Graph-Adversarial-Learning

图对抗学习攻防技术与研究进展综述

该项目是一个图对抗学习综合资源库,收录2017年至今的攻击、防御和鲁棒性认证相关论文。资源按字母、年份和会议分类,并提供代码实现汇总。内容涵盖图神经网络攻击方法、防御策略和稳定性研究,为图对抗学习研究提供重要参考。

图对抗学习图神经网络攻击方法防御策略论文综述Github开源项目

⚔🛡 Awesome Graph Adversarial Learning

<img src="https://img.shields.io/badge/Contributions-Welcome-278ea5" alt="Contrib"/> <img src="https://img.shields.io/badge/Number%20of%20Papers-416-FF6F00" alt="PaperNum"/>

<a class="toc" id="table-of-contents"></a>

<img width =500 height =300 src="imgs/wordcloud.png" >

This repository contains Attack-related papers, Defense-related papers, Robustness Certification papers, etc., ranging from 2017 to 2021. If you find this repo useful, please cite: A Survey of Adversarial Learning on Graph, arXiv'20, Link

@article{chen2020survey, title={A Survey of Adversarial Learning on Graph}, author={Chen, Liang and Li, Jintang and Peng, Jiaying and Xie, Tao and Cao, Zengxu and Xu, Kun and He, Xiangnan and Zheng, Zibin and Wu, Bingzhe}, journal={arXiv preprint arXiv:2003.05730}, year={2020} }

👀Quick Look

The papers in this repo are categorized or sorted:

| By Alphabet | By Year | By Venue | Papers with Code |

If you want to get a quick look at the recently updated papers in the repository (in 30 days), you can refer to 📍this.

⚔Attack

2023

💨 Back to Top

2022

💨 Back to Top

  • Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem, 📝WSDM, :octocat:Code
  • Inference Attacks Against Graph Neural Networks, 📝USENIX Security, :octocat:Code
  • Model Stealing Attacks Against Inductive Graph Neural Networks, 📝IEEE Symposium on Security and Privacy, :octocat:Code
  • Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, 📝WWW, :octocat:Code
  • Neighboring Backdoor Attacks on Graph Convolutional Network, 📝arXiv, :octocat:Code
  • Understanding and Improving Graph Injection Attack by Promoting Unnoticeability, 📝ICLR, :octocat:Code
  • Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs, 📝AAAI, :octocat:Code
  • More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks, 📝arXiv
  • Black-box Node Injection Attack for Graph Neural Networks, 📝arXiv, :octocat:Code
  • Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection, 📝arXiv
  • Projective Ranking-based GNN Evasion Attacks, 📝arXiv
  • GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation, 📝arXiv
  • Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization, 📝Asia CCS, :octocat:Code
  • Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees, 📝CVPR, :octocat:Code
  • Transferable Graph Backdoor Attack, 📝RAID, :octocat:Code
  • Adversarial Robustness of Graph-based Anomaly Detection, 📝arXiv
  • Label specificity attack: Change your label as I want, 📝IJIS
  • AdverSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph Neural Networks, 📝ICASSP
  • Surrogate Representation Learning with Isometric Mapping for Gray-box Graph Adversarial Attacks, 📝WSDM
  • Cluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝IJCAI, :octocat:Code
  • Label-Only Membership Inference Attack against Node-Level Graph Neural NetworksCluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝arXiv
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Are Gradients on Graph Structure Reliable in Gray-box Attacks?, 📝CIKM, :octocat:Code
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Graph Structural Attack by Perturbing Spectral Distance, 📝KDD
  • What Does the Gradient Tell When Attacking the Graph Structure, 📝arXiv
  • BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly Detection, 📝ICDM, :octocat:Code
  • Model Inversion Attacks against Graph Neural Networks, 📝TKDE
  • Sparse Vicious Attacks on Graph Neural Networks, 📝arXiv, :octocat:Code
  • Poisoning GNN-based Recommender Systems with Generative Surrogate-based Attacks, 📝ACM TIS
  • Dealing with the unevenness: deeper insights in graph-based attack and defense, 📝Machine Learning
  • Membership Inference Attacks Against Robust Graph Neural Network, 📝CSS
  • Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural Networks, 📝ICDM, :octocat:Code
  • Revisiting Item Promotion in GNN-based Collaborative Filtering: A Masked Targeted Topological Attack Perspective, 📝arXiv
  • Link-Backdoor: Backdoor Attack on Link Prediction via Node Injection, 📝arXiv, :octocat:Code
  • Private Graph Extraction via Feature Explanations, 📝arXiv
  • Towards Secrecy-Aware Attacks Against Trust Prediction in Signed Graphs, 📝arXiv
  • Camouflaged Poisoning Attack on Graph Neural Networks, 📝ICDM
  • LOKI: A Practical Data Poisoning Attack Framework against Next Item Recommendations, 📝TKDE
  • Adversarial for Social Privacy: A Poisoning Strategy to Degrade User Identity Linkage, 📝arXiv
  • Exploratory Adversarial Attacks on Graph Neural Networks for Semi-Supervised Node Classification, 📝Pattern Recognition
  • GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections, 📝arXiv, :octocat:Code
  • Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs, 📝arXiv
  • Are Defenses for Graph Neural Networks Robust?, 📝NeurIPS, :octocat:Code
  • Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation, 📝ECCV
  • Imperceptible Adversarial Attacks on Discrete-Time Dynamic Graph Models, 📝NeurIPS
  • Towards Reasonable Budget Allocation in Untargeted Graph Structure Attacks via Gradient Debias, 📝NeurIPS, :octocat:Code
  • Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks, 📝SecureComm

2021

💨 Back to Top

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多