CVinW_Readings

CVinW_Readings

聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域

CVinW_Readings项目聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域。项目提供CVinW简介并维护相关论文集。CVinW致力于开发易于适应广泛视觉任务的可转移基础模型,特点是广泛的任务转移场景和低转移成本。内容涵盖任务级转移、高效模型适应和域外泛化等研究方向的最新进展。

计算机视觉迁移学习预训练模型多模态图像分类Github开源项目

CVinW Readings Awesome

``Computer Vision in the Wild (CVinW)'' is an emerging research field. This writeup provides a quick introduction of CVinW and maintains a collection of papers on the topic. If you find some missing papers or resources, please open issues or pull requests (recommended).

Table of Contents

What is Computer Vision in the Wild?

:star: Goals of CVinW

Developing a transferable foundation model/system that can effortlessly adapt to a large range of visual tasks in the wild. It comes with two key factors: (i) The task transfer scenarios are broad, and (ii) The task transfer cost is low. The main idea is illustrated as follows, please see the detailed description in ELEVATER paper.

:one: Task Transfer Scenarios are Broad

We illustrate and compare CVinW with other settings using a 2D chart in Figure 1, where the space is constructed with two orthogonal dimensions: input image distribution and output concept set. The 2D chart is divided into four quadrants, based on how the model evaluation stage is different from model development stage. For any visual recognition problems at different granularity such as image classification, object detection and segmentation, the modeling setup cann be categorized into one of the four settings. We see an emerging trend on moving towards CVinW. Interested in the various pre-trained vision models that move towards CVinW? please check out Section :fire:``Papers on Task-level Transfer with Pre-trained Models''.

<table> <tr> <td width="50%"> <ul> <li><b>The Close-Set Setting. </b> Both training and evaluation distributions are consistent in both dimensions, a typical setting in ML/CV textbooks.</li> <li><b>Open-Set/Vocabulary/World Setting.</b> It allows new concepts in evaluation, while typically remains the same visual domain. Please see examples in <a href='https://arxiv.org/abs/1707.00600'>image classification</a> and <a href='https://arxiv.org/abs/2011.10678'>object detection</a>. </li> <li><b>Domain Generalization Setting.</b> Domain shift allows new visual domain in evaluation, while typically remains the same concept pool. Please see examples such as <a href='https://arxiv.org/abs/2007.01434'>DomainBed</a> and <a href='http://ai.bu.edu/M3SDA/'>DomainNet</a>. </li> <li style="background-color:powderblue;"><b>Computer Vision in the Wild Setting. </b> CVinW allows the flexibility in both dimensions, where any new tasks/datasets in the wild essentially fall into.</li> </ul> </td> <td> <img src="images/fig_cvinw.png" style="width:100%;"> </td> </tr> <tr> <th> A brief definition with a four-quadrant chart </th> <th>Figure 1: The comparison of CVinW with other existing settings</th> </tr> </table>

:two: Task Transfer Cost is Low

One major advantage of pre-trained models is the promise that they can transfer to downstream tasks effortlessly. The model adaptation cost is considered in two orthogonal dimensions: sample-efficiency and parameter-efficiency, as illustrated in Figure 2. The bottom-left corner and top-right corner is the most inexpensive and expensive adaptation strategy, respectively. One may interpolate and make combinations in the 2D space, to get different model adaptation methods with different cost. To efficient adapt large vision models of the gradaully increaseing size, we see an emerging need on efficient model adaptation. Interested in contributing your smart efficient adaptation algorithms and see how it differs from existing papers? please check out Section :snowflake:``Papers on Efficient Model Adaptation'' .

<table> <tr> <td width="50%"> <ul> <li><b>Sample-efficiency: Zero-, Few-, and Full-shot. </b> Due to the high cost of annotating data, it is often desired to provide a small number of labeled image-label pairs in downstream datasets. Transferable models should be able to reach high performance in this data-limited scenario..</li> <li><b>Parameter-efficiency: Frozen Model Inference, Prompting Tuning, Linear Probing vs Full Model Fine-tuning..</b> A smaller number of trainable parameter in model adaptation typically means a small training cost in a new task. </li> </ul> </td> <td> <img src="images/fig_adapation_cost.png" style="width:100%;"> </td> </tr> <tr> <th> A breakdown definition of efficient model adaptation</th> <th>Figure 2: The 2D chart of model adaptation cost.</th> </tr> </table>

:cinema: Benchmarks

<p> <font size=3><b>ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models.</b></font> <br> <font size=2>Chunyuan Li*, Haotian Liu*, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, Jianfeng Gao.</font> <br> <font size=2> NeurIPS 2022 (Datasets and Benchmarks Track).</font> <a href='https://arxiv.org/abs/2204.08790'>[paper]</a> <a href='https://computer-vision-in-the-wild.github.io/ELEVATER/'>[benchmark]</a> </p>

:loudspeaker: News

<img src="images/mfm_evolution.jpeg" width=60%/>

$\qquad$ <img src="images/cvpr-2023-logo.jpeg" width=10%/> [Workshop] $\qquad$ <img src="images/sginw.jpg" width=10%/> [SGinW Challenge] $\qquad$ <img src="images/rf100.png" width=10%/> [RF100 Challenge]

$\qquad$ <img src="images/eccv2022-logo.png" width=10%/> [Workshop] $\qquad$ <img src="images/icinw100.jpg" width=10%/> [ICinW Challenge] $\qquad$ <img src="images/odinw.jpg" width=10%/> [ODinW Challenge]

:fire: Papers on Task-level Transfer with Pre-trained Models

:orange_book: Image Classification in the Wild

<p> <font size=3><b>[CLIP] Learning Transferable Visual Models From Natural Language Supervision.</b></font> <br> <font size=2>Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2103.00020'>[paper]</a> <a href='https://github.com/OpenAI/CLIP'>[code]</a> </p> <p> <font size=3><b>[ALIGN] Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision.</b></font> <br> <font size=2>Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2102.05918'>[paper]</a> </p> <p> <font size=3><b>OpenCLIP.</b></font> <br> <font size=2>Gabriel Ilharco*, Mitchell Wortsman*, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, John Miller, Hongseok Namkoong, Hannaneh Hajishirzi, Ali Farhadi, Ludwig Schmidt.</font> <br> <font size=2>10.5281/zenodo.5143773, 2021.</font> <a href='https://github.com/mlfoundations/open_clip'>[code]</a> </p> <p> <font size=3><b>Florence: A New Foundation Model for Computer Vision.</b></font> <br> <font size=2>Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, Pengchuan Zhang.</font> <br> <font size=2> arXiv:2111.11432, 2022.</font> <a href='https://arxiv.org/abs/2111.11432'>[paper]</a> </p> <p> <font size=3><b>[UniCL] Unified Contrastive Learning in Image-Text-Label Space.</b></font> <br> <font size=2>Jianwei Yang*, Chunyuan Li*, Pengchuan Zhang*, Bin Xiao*, Ce Liu, Lu Yuan, Jianfeng Gao.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2204.03610'>[paper]</a> <a href='https://github.com/microsoft/UniCL'>[code]</a> </p> <p> <font size=3><b>LiT: Zero-Shot Transfer with Locked-image text Tuning.</b></font> <br> <font size=2>Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, Lucas Beyer.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2111.07991'>[paper]</a> </p> <p> <font size=3><b>[DeCLIP] Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm.</b></font> <br> <font size=2>Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, Junjie Yan.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2110.05208'>[paper]</a> <a href='https://github.com/Sense-GVT/DeCLIP'>[code]</a> </p> <p> <font size=3><b>FILIP: Fine-grained Interactive Language-Image Pre-Training.</b></font> <br> <font size=2>Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, Chunjing Xu.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2111.07783'>[paper]</a> </p> <p> <font size=3><b>SLIP: Self-supervision meets Language-Image Pre-training.</b></font> <br> <font size=2>Norman Mu, Alexander Kirillov, David Wagner, Saining Xie.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2112.12750'>[paper]</a> <a href='https://github.com/facebookresearch/SLIP'>[code]</a> </p> <p> <font size=3><b>[MS-CLIP]: Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training.</b></font> <br> <font size=2>Haoxuan You*, Luowei Zhou*, Bin Xiao*, Noel Codella*, Yu Cheng, Ruochen Xu, Shih-Fu Chang, Lu Yuan.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2207.12661'>[paper]</a> <a href='https://github.com/Hxyou/MSCLIP'>[code]</a> </p> <p> <font size=3><b>MultiMAE: Multi-modal Multi-task Masked Autoencoders.</b></font> <br> <font size=2>Roman Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir.</font> <br> <font size=2>ECCV

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多