CVinW_Readings

CVinW_Readings

聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域

CVinW_Readings项目聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域。项目提供CVinW简介并维护相关论文集。CVinW致力于开发易于适应广泛视觉任务的可转移基础模型,特点是广泛的任务转移场景和低转移成本。内容涵盖任务级转移、高效模型适应和域外泛化等研究方向的最新进展。

计算机视觉迁移学习预训练模型多模态图像分类Github开源项目

CVinW Readings Awesome

``Computer Vision in the Wild (CVinW)'' is an emerging research field. This writeup provides a quick introduction of CVinW and maintains a collection of papers on the topic. If you find some missing papers or resources, please open issues or pull requests (recommended).

Table of Contents

What is Computer Vision in the Wild?

:star: Goals of CVinW

Developing a transferable foundation model/system that can effortlessly adapt to a large range of visual tasks in the wild. It comes with two key factors: (i) The task transfer scenarios are broad, and (ii) The task transfer cost is low. The main idea is illustrated as follows, please see the detailed description in ELEVATER paper.

:one: Task Transfer Scenarios are Broad

We illustrate and compare CVinW with other settings using a 2D chart in Figure 1, where the space is constructed with two orthogonal dimensions: input image distribution and output concept set. The 2D chart is divided into four quadrants, based on how the model evaluation stage is different from model development stage. For any visual recognition problems at different granularity such as image classification, object detection and segmentation, the modeling setup cann be categorized into one of the four settings. We see an emerging trend on moving towards CVinW. Interested in the various pre-trained vision models that move towards CVinW? please check out Section :fire:``Papers on Task-level Transfer with Pre-trained Models''.

<table> <tr> <td width="50%"> <ul> <li><b>The Close-Set Setting. </b> Both training and evaluation distributions are consistent in both dimensions, a typical setting in ML/CV textbooks.</li> <li><b>Open-Set/Vocabulary/World Setting.</b> It allows new concepts in evaluation, while typically remains the same visual domain. Please see examples in <a href='https://arxiv.org/abs/1707.00600'>image classification</a> and <a href='https://arxiv.org/abs/2011.10678'>object detection</a>. </li> <li><b>Domain Generalization Setting.</b> Domain shift allows new visual domain in evaluation, while typically remains the same concept pool. Please see examples such as <a href='https://arxiv.org/abs/2007.01434'>DomainBed</a> and <a href='http://ai.bu.edu/M3SDA/'>DomainNet</a>. </li> <li style="background-color:powderblue;"><b>Computer Vision in the Wild Setting. </b> CVinW allows the flexibility in both dimensions, where any new tasks/datasets in the wild essentially fall into.</li> </ul> </td> <td> <img src="images/fig_cvinw.png" style="width:100%;"> </td> </tr> <tr> <th> A brief definition with a four-quadrant chart </th> <th>Figure 1: The comparison of CVinW with other existing settings</th> </tr> </table>

:two: Task Transfer Cost is Low

One major advantage of pre-trained models is the promise that they can transfer to downstream tasks effortlessly. The model adaptation cost is considered in two orthogonal dimensions: sample-efficiency and parameter-efficiency, as illustrated in Figure 2. The bottom-left corner and top-right corner is the most inexpensive and expensive adaptation strategy, respectively. One may interpolate and make combinations in the 2D space, to get different model adaptation methods with different cost. To efficient adapt large vision models of the gradaully increaseing size, we see an emerging need on efficient model adaptation. Interested in contributing your smart efficient adaptation algorithms and see how it differs from existing papers? please check out Section :snowflake:``Papers on Efficient Model Adaptation'' .

<table> <tr> <td width="50%"> <ul> <li><b>Sample-efficiency: Zero-, Few-, and Full-shot. </b> Due to the high cost of annotating data, it is often desired to provide a small number of labeled image-label pairs in downstream datasets. Transferable models should be able to reach high performance in this data-limited scenario..</li> <li><b>Parameter-efficiency: Frozen Model Inference, Prompting Tuning, Linear Probing vs Full Model Fine-tuning..</b> A smaller number of trainable parameter in model adaptation typically means a small training cost in a new task. </li> </ul> </td> <td> <img src="images/fig_adapation_cost.png" style="width:100%;"> </td> </tr> <tr> <th> A breakdown definition of efficient model adaptation</th> <th>Figure 2: The 2D chart of model adaptation cost.</th> </tr> </table>

:cinema: Benchmarks

<p> <font size=3><b>ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models.</b></font> <br> <font size=2>Chunyuan Li*, Haotian Liu*, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, Jianfeng Gao.</font> <br> <font size=2> NeurIPS 2022 (Datasets and Benchmarks Track).</font> <a href='https://arxiv.org/abs/2204.08790'>[paper]</a> <a href='https://computer-vision-in-the-wild.github.io/ELEVATER/'>[benchmark]</a> </p>

:loudspeaker: News

<img src="images/mfm_evolution.jpeg" width=60%/>

$\qquad$ <img src="images/cvpr-2023-logo.jpeg" width=10%/> [Workshop] $\qquad$ <img src="images/sginw.jpg" width=10%/> [SGinW Challenge] $\qquad$ <img src="images/rf100.png" width=10%/> [RF100 Challenge]

$\qquad$ <img src="images/eccv2022-logo.png" width=10%/> [Workshop] $\qquad$ <img src="images/icinw100.jpg" width=10%/> [ICinW Challenge] $\qquad$ <img src="images/odinw.jpg" width=10%/> [ODinW Challenge]

:fire: Papers on Task-level Transfer with Pre-trained Models

:orange_book: Image Classification in the Wild

<p> <font size=3><b>[CLIP] Learning Transferable Visual Models From Natural Language Supervision.</b></font> <br> <font size=2>Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2103.00020'>[paper]</a> <a href='https://github.com/OpenAI/CLIP'>[code]</a> </p> <p> <font size=3><b>[ALIGN] Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision.</b></font> <br> <font size=2>Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2102.05918'>[paper]</a> </p> <p> <font size=3><b>OpenCLIP.</b></font> <br> <font size=2>Gabriel Ilharco*, Mitchell Wortsman*, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, John Miller, Hongseok Namkoong, Hannaneh Hajishirzi, Ali Farhadi, Ludwig Schmidt.</font> <br> <font size=2>10.5281/zenodo.5143773, 2021.</font> <a href='https://github.com/mlfoundations/open_clip'>[code]</a> </p> <p> <font size=3><b>Florence: A New Foundation Model for Computer Vision.</b></font> <br> <font size=2>Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, Pengchuan Zhang.</font> <br> <font size=2> arXiv:2111.11432, 2022.</font> <a href='https://arxiv.org/abs/2111.11432'>[paper]</a> </p> <p> <font size=3><b>[UniCL] Unified Contrastive Learning in Image-Text-Label Space.</b></font> <br> <font size=2>Jianwei Yang*, Chunyuan Li*, Pengchuan Zhang*, Bin Xiao*, Ce Liu, Lu Yuan, Jianfeng Gao.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2204.03610'>[paper]</a> <a href='https://github.com/microsoft/UniCL'>[code]</a> </p> <p> <font size=3><b>LiT: Zero-Shot Transfer with Locked-image text Tuning.</b></font> <br> <font size=2>Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, Lucas Beyer.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2111.07991'>[paper]</a> </p> <p> <font size=3><b>[DeCLIP] Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm.</b></font> <br> <font size=2>Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, Junjie Yan.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2110.05208'>[paper]</a> <a href='https://github.com/Sense-GVT/DeCLIP'>[code]</a> </p> <p> <font size=3><b>FILIP: Fine-grained Interactive Language-Image Pre-Training.</b></font> <br> <font size=2>Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, Chunjing Xu.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2111.07783'>[paper]</a> </p> <p> <font size=3><b>SLIP: Self-supervision meets Language-Image Pre-training.</b></font> <br> <font size=2>Norman Mu, Alexander Kirillov, David Wagner, Saining Xie.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2112.12750'>[paper]</a> <a href='https://github.com/facebookresearch/SLIP'>[code]</a> </p> <p> <font size=3><b>[MS-CLIP]: Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training.</b></font> <br> <font size=2>Haoxuan You*, Luowei Zhou*, Bin Xiao*, Noel Codella*, Yu Cheng, Ruochen Xu, Shih-Fu Chang, Lu Yuan.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2207.12661'>[paper]</a> <a href='https://github.com/Hxyou/MSCLIP'>[code]</a> </p> <p> <font size=3><b>MultiMAE: Multi-modal Multi-task Masked Autoencoders.</b></font> <br> <font size=2>Roman Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir.</font> <br> <font size=2>ECCV

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多