CVinW_Readings

CVinW_Readings

聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域

CVinW_Readings项目聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域。项目提供CVinW简介并维护相关论文集。CVinW致力于开发易于适应广泛视觉任务的可转移基础模型,特点是广泛的任务转移场景和低转移成本。内容涵盖任务级转移、高效模型适应和域外泛化等研究方向的最新进展。

计算机视觉迁移学习预训练模型多模态图像分类Github开源项目

CVinW Readings Awesome

``Computer Vision in the Wild (CVinW)'' is an emerging research field. This writeup provides a quick introduction of CVinW and maintains a collection of papers on the topic. If you find some missing papers or resources, please open issues or pull requests (recommended).

Table of Contents

What is Computer Vision in the Wild?

:star: Goals of CVinW

Developing a transferable foundation model/system that can effortlessly adapt to a large range of visual tasks in the wild. It comes with two key factors: (i) The task transfer scenarios are broad, and (ii) The task transfer cost is low. The main idea is illustrated as follows, please see the detailed description in ELEVATER paper.

:one: Task Transfer Scenarios are Broad

We illustrate and compare CVinW with other settings using a 2D chart in Figure 1, where the space is constructed with two orthogonal dimensions: input image distribution and output concept set. The 2D chart is divided into four quadrants, based on how the model evaluation stage is different from model development stage. For any visual recognition problems at different granularity such as image classification, object detection and segmentation, the modeling setup cann be categorized into one of the four settings. We see an emerging trend on moving towards CVinW. Interested in the various pre-trained vision models that move towards CVinW? please check out Section :fire:``Papers on Task-level Transfer with Pre-trained Models''.

<table> <tr> <td width="50%"> <ul> <li><b>The Close-Set Setting. </b> Both training and evaluation distributions are consistent in both dimensions, a typical setting in ML/CV textbooks.</li> <li><b>Open-Set/Vocabulary/World Setting.</b> It allows new concepts in evaluation, while typically remains the same visual domain. Please see examples in <a href='https://arxiv.org/abs/1707.00600'>image classification</a> and <a href='https://arxiv.org/abs/2011.10678'>object detection</a>. </li> <li><b>Domain Generalization Setting.</b> Domain shift allows new visual domain in evaluation, while typically remains the same concept pool. Please see examples such as <a href='https://arxiv.org/abs/2007.01434'>DomainBed</a> and <a href='http://ai.bu.edu/M3SDA/'>DomainNet</a>. </li> <li style="background-color:powderblue;"><b>Computer Vision in the Wild Setting. </b> CVinW allows the flexibility in both dimensions, where any new tasks/datasets in the wild essentially fall into.</li> </ul> </td> <td> <img src="images/fig_cvinw.png" style="width:100%;"> </td> </tr> <tr> <th> A brief definition with a four-quadrant chart </th> <th>Figure 1: The comparison of CVinW with other existing settings</th> </tr> </table>

:two: Task Transfer Cost is Low

One major advantage of pre-trained models is the promise that they can transfer to downstream tasks effortlessly. The model adaptation cost is considered in two orthogonal dimensions: sample-efficiency and parameter-efficiency, as illustrated in Figure 2. The bottom-left corner and top-right corner is the most inexpensive and expensive adaptation strategy, respectively. One may interpolate and make combinations in the 2D space, to get different model adaptation methods with different cost. To efficient adapt large vision models of the gradaully increaseing size, we see an emerging need on efficient model adaptation. Interested in contributing your smart efficient adaptation algorithms and see how it differs from existing papers? please check out Section :snowflake:``Papers on Efficient Model Adaptation'' .

<table> <tr> <td width="50%"> <ul> <li><b>Sample-efficiency: Zero-, Few-, and Full-shot. </b> Due to the high cost of annotating data, it is often desired to provide a small number of labeled image-label pairs in downstream datasets. Transferable models should be able to reach high performance in this data-limited scenario..</li> <li><b>Parameter-efficiency: Frozen Model Inference, Prompting Tuning, Linear Probing vs Full Model Fine-tuning..</b> A smaller number of trainable parameter in model adaptation typically means a small training cost in a new task. </li> </ul> </td> <td> <img src="images/fig_adapation_cost.png" style="width:100%;"> </td> </tr> <tr> <th> A breakdown definition of efficient model adaptation</th> <th>Figure 2: The 2D chart of model adaptation cost.</th> </tr> </table>

:cinema: Benchmarks

<p> <font size=3><b>ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models.</b></font> <br> <font size=2>Chunyuan Li*, Haotian Liu*, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, Jianfeng Gao.</font> <br> <font size=2> NeurIPS 2022 (Datasets and Benchmarks Track).</font> <a href='https://arxiv.org/abs/2204.08790'>[paper]</a> <a href='https://computer-vision-in-the-wild.github.io/ELEVATER/'>[benchmark]</a> </p>

:loudspeaker: News

<img src="images/mfm_evolution.jpeg" width=60%/>

$\qquad$ <img src="images/cvpr-2023-logo.jpeg" width=10%/> [Workshop] $\qquad$ <img src="images/sginw.jpg" width=10%/> [SGinW Challenge] $\qquad$ <img src="images/rf100.png" width=10%/> [RF100 Challenge]

$\qquad$ <img src="images/eccv2022-logo.png" width=10%/> [Workshop] $\qquad$ <img src="images/icinw100.jpg" width=10%/> [ICinW Challenge] $\qquad$ <img src="images/odinw.jpg" width=10%/> [ODinW Challenge]

:fire: Papers on Task-level Transfer with Pre-trained Models

:orange_book: Image Classification in the Wild

<p> <font size=3><b>[CLIP] Learning Transferable Visual Models From Natural Language Supervision.</b></font> <br> <font size=2>Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2103.00020'>[paper]</a> <a href='https://github.com/OpenAI/CLIP'>[code]</a> </p> <p> <font size=3><b>[ALIGN] Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision.</b></font> <br> <font size=2>Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.</font> <br> <font size=2>ICML 2021.</font> <a href='https://arxiv.org/abs/2102.05918'>[paper]</a> </p> <p> <font size=3><b>OpenCLIP.</b></font> <br> <font size=2>Gabriel Ilharco*, Mitchell Wortsman*, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, John Miller, Hongseok Namkoong, Hannaneh Hajishirzi, Ali Farhadi, Ludwig Schmidt.</font> <br> <font size=2>10.5281/zenodo.5143773, 2021.</font> <a href='https://github.com/mlfoundations/open_clip'>[code]</a> </p> <p> <font size=3><b>Florence: A New Foundation Model for Computer Vision.</b></font> <br> <font size=2>Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, Pengchuan Zhang.</font> <br> <font size=2> arXiv:2111.11432, 2022.</font> <a href='https://arxiv.org/abs/2111.11432'>[paper]</a> </p> <p> <font size=3><b>[UniCL] Unified Contrastive Learning in Image-Text-Label Space.</b></font> <br> <font size=2>Jianwei Yang*, Chunyuan Li*, Pengchuan Zhang*, Bin Xiao*, Ce Liu, Lu Yuan, Jianfeng Gao.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2204.03610'>[paper]</a> <a href='https://github.com/microsoft/UniCL'>[code]</a> </p> <p> <font size=3><b>LiT: Zero-Shot Transfer with Locked-image text Tuning.</b></font> <br> <font size=2>Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, Lucas Beyer.</font> <br> <font size=2>CVPR 2022.</font> <a href='https://arxiv.org/abs/2111.07991'>[paper]</a> </p> <p> <font size=3><b>[DeCLIP] Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm.</b></font> <br> <font size=2>Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, Junjie Yan.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2110.05208'>[paper]</a> <a href='https://github.com/Sense-GVT/DeCLIP'>[code]</a> </p> <p> <font size=3><b>FILIP: Fine-grained Interactive Language-Image Pre-Training.</b></font> <br> <font size=2>Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, Chunjing Xu.</font> <br> <font size=2>ICLR 2022.</font> <a href='https://arxiv.org/abs/2111.07783'>[paper]</a> </p> <p> <font size=3><b>SLIP: Self-supervision meets Language-Image Pre-training.</b></font> <br> <font size=2>Norman Mu, Alexander Kirillov, David Wagner, Saining Xie.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2112.12750'>[paper]</a> <a href='https://github.com/facebookresearch/SLIP'>[code]</a> </p> <p> <font size=3><b>[MS-CLIP]: Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training.</b></font> <br> <font size=2>Haoxuan You*, Luowei Zhou*, Bin Xiao*, Noel Codella*, Yu Cheng, Ruochen Xu, Shih-Fu Chang, Lu Yuan.</font> <br> <font size=2>ECCV 2022.</font> <a href='https://arxiv.org/abs/2207.12661'>[paper]</a> <a href='https://github.com/Hxyou/MSCLIP'>[code]</a> </p> <p> <font size=3><b>MultiMAE: Multi-modal Multi-task Masked Autoencoders.</b></font> <br> <font size=2>Roman Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir.</font> <br> <font size=2>ECCV

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多