``Computer Vision in the Wild (CVinW)'' is an emerging research field. This writeup provides a quick introduction of CVinW and maintains a collection of papers on the topic. If you find some missing papers or resources, please open issues or pull requests (recommended).
Developing a transferable foundation model/system that can effortlessly adapt to a large range of visual tasks in the wild. It comes with two key factors: (i) The task transfer scenarios are broad, and (ii) The task transfer cost is low. The main idea is illustrated as follows, please see the detailed description in ELEVATER paper.
We illustrate and compare CVinW with other settings using a 2D chart in Figure 1, where the space is constructed with two orthogonal dimensions: input image distribution and output concept set. The 2D chart is divided into four quadrants, based on how the model evaluation stage is different from model development stage. For any visual recognition problems at different granularity such as image classification, object detection and segmentation, the modeling setup cann be categorized into one of the four settings. We see an emerging trend on moving towards CVinW. Interested in the various pre-trained vision models that move towards CVinW? please check out Section :fire:``Papers on Task-level Transfer with Pre-trained Models''.
<table> <tr> <td width="50%"> <ul> <li><b>The Close-Set Setting. </b> Both training and evaluation distributions are consistent in both dimensions, a typical setting in ML/CV textbooks.</li> <li><b>Open-Set/Vocabulary/World Setting.</b> It allows new concepts in evaluation, while typically remains the same visual domain. Please see examples in <a href='https://arxiv.org/abs/1707.00600'>image classification</a> and <a href='https://arxiv.org/abs/2011.10678'>object detection</a>. </li> <li><b>Domain Generalization Setting.</b> Domain shift allows new visual domain in evaluation, while typically remains the same concept pool. Please see examples such as <a href='https://arxiv.org/abs/2007.01434'>DomainBed</a> and <a href='http://ai.bu.edu/M3SDA/'>DomainNet</a>. </li> <li style="background-color:powderblue;"><b>Computer Vision in the Wild Setting. </b> CVinW allows the flexibility in both dimensions, where any new tasks/datasets in the wild essentially fall into.</li> </ul> </td> <td> <img src="images/fig_cvinw.png" style="width:100%;"> </td> </tr> <tr> <th> A brief definition with a four-quadrant chart </th> <th>Figure 1: The comparison of CVinW with other existing settings</th> </tr> </table>One major advantage of pre-trained models is the promise that they can transfer to downstream tasks effortlessly. The model adaptation cost is considered in two orthogonal dimensions: sample-efficiency and parameter-efficiency, as illustrated in Figure 2. The bottom-left corner and top-right corner is the most inexpensive and expensive adaptation strategy, respectively. One may interpolate and make combinations in the 2D space, to get different model adaptation methods with different cost. To efficient adapt large vision models of the gradaully increaseing size, we see an emerging need on efficient model adaptation. Interested in contributing your smart efficient adaptation algorithms and see how it differs from existing papers? please check out Section :snowflake:``Papers on Efficient Model Adaptation'' .
<table> <tr> <td width="50%"> <ul> <li><b>Sample-efficiency: Zero-, Few-, and Full-shot. </b> Due to the high cost of annotating data, it is often desired to provide a small number of labeled image-label pairs in downstream datasets. Transferable models should be able to reach high performance in this data-limited scenario..</li> <li><b>Parameter-efficiency: Frozen Model Inference, Prompting Tuning, Linear Probing vs Full Model Fine-tuning..</b> A smaller number of trainable parameter in model adaptation typically means a small training cost in a new task. </li> </ul> </td> <td> <img src="images/fig_adapation_cost.png" style="width:100%;"> </td> </tr> <tr> <th> A breakdown definition of efficient model adaptation</th> <th>Figure 2: The 2D chart of model adaptation cost.</th> </tr> </table>$\qquad$ <img src="images/cvpr-2023-logo.jpeg" width=10%/> [Workshop] $\qquad$ <img src="images/sginw.jpg" width=10%/> [SGinW Challenge] $\qquad$ <img src="images/rf100.png" width=10%/> [RF100 Challenge]
$\qquad$ <img src="images/eccv2022-logo.png" width=10%/> [Workshop] $\qquad$ <img src="images/icinw100.jpg" width=10%/> [ICinW Challenge] $\qquad$ <img src="images/odinw.jpg" width=10%/> [ODinW Challenge]
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改 变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能 提供支持,帮助用户精准表达,轻松呈现各种信息。