<a href="https://github.com/Charmve"><img src="https://img.shields.io/badge/GitHub-@Charmve-000000.svg?logo=GitHub" alt="GitHub" target="_blank"></a>
<a href="https://charmve.github.io/computer-vision-in-action/" target="_blank"><img src="https://img.shields.io/badge/计算机视觉实战-简体中文-000000.svg?logo=GitBook" alt="Computer Vision in Action"></a>
<a href="https://opencollective.com/surfacedd"><img src="https://img.shields.io/badge/OpenCollective-Sponsor-000000.svg?logo=OpenCollective&color=purple" alt="Open Collective"></a>
*** 本项目会持续更新,右上角收藏防丢失 Star :star: ~ ***
<b>Star anti-lost</b>
<i>喜欢这个项目吗?请考虑 :heart: 赞助本项目 以帮助长期维护!</i>
</div><b>- Data Amplification and Generation</b>
<p> The most commonly used defect image expansion method is to use multiple image processing operations such as mirroring, rotation, translation, distortion, filtering, and contrast adjustment on the original defect samples to obtain more samples. Another more common method is data synthesis, where individual defects are often fused and superimposed on normal (non-defective) samples to form defective samples.</p><b>- Network Pre-training and Transfer Learning</b>
<p>Generally speaking, using small samples to train deep learning networks can easily lead to <strong>overfitting</strong>, so methods based on pre-training networks or transfer learning are currently one of the most commonly used methods for samples.</p><b>- Reasonable Network Structure Design</b>
<p>The need for samples can also be greatly reduced by designing a reasonable network structure. Based on the compressed sampling theorem to compress and expand small sample data, we use CNN to directly classify the compressed sampling data features. Compared with the original image input, compressing the input can greatly reduce the network's demand for samples. In addition, the surface defect detection method based on the twin network can also be regarded as a special network design, which can greatly reduce the sample requirement.</p><b>- Unsupervised or Semi-supervised Method</b>
In the unsupervised model, only normal samples are used for training, so there is no need for defective samples. The semi-supervised method can use unlabeled samples to solve the network training problem in the case of small samples.
👆 <b>BACK to Table of Contents</b> -->
👆 <b>BACK to Table of Contents</b> -->
NEU-CLS can be used for classification and positioning tasks.
<b> latest access 🔗 - (#16) </b>
<div align=center><img src="https://img-blog.csdnimg.cn/20200927223042720.png"></div> <p>The surface defect dataset released by Northeastern University (NEU) collects six typical surface defects of hot-rolled steel strips, namely rolling scale (RS), plaque (Pa), cracking (Cr), pitting surface (PS), inclusions (In) and scratches (Sc). The dataset includes 1,800 grayscale images, six different types of typical surface defects each of which contains 300 samples. For defect detection tasks, the dataset provides annotations that indicate the category and location of the defect in each image. For each defect, the yellow box is the border indicating its location, and the green label is the category score.</p> <div align=center><img src="https://user-images.githubusercontent.com/29084184/114502526-82306280-9c5e-11eb-9d60-011ee100e179.png"></div>Severstal is leading the charge in efficient steel mining and production. They believe the future of metallurgy requires development across the economic, ecological, and social aspects of the industry—and they take corporate responsibility seriously. The company recently created the country’s largest industrial data lake, with petabytes of data that were previously discarded. Severstal is now looking to machine learning to improve automation, increase efficiency, and maintain high quality in their production.
https://www.kaggle.com/c/severstal-steel-defect-detection
<br>👆 <b>BACK to Table of Contents</b> -->
The dataset contains 2,624 samples of 300x300 pixels 8-bit grayscale images of functional and defective solar cells with varying degree of degradations extracted from 44 different solar modules. The defects in the annotated images are either of intrinsic or extrinsic type and are known to reduce the power efficiency of solar modules.
All images are normalized with respect to size and perspective. Additionally, any distortion induced by the camera lens used to capture the EL images was eliminated prior to solar cell extraction.
<br>👆 <b>BACK to Table of Contents</b> -->
The dataset is constructed from images of defected electrical commutators that were provided and annotated by Kolektor Group. Specifically, microscopic fractions or cracks were observed on the surface of the plastic embedding in electrical commutators. The surface area of each commutator was captured in eight non-overlapping images. The images were captured in a controlled environment.
<div align=center><img src="metal_surface.png"></div> <br>Official Link:https://www.vicos.si/Downloads/KolektorSDD
Download Link:https://pan.baidu.com/share/init?surl=HSzHC1ltHvt1hSJh_IY4Jg (password:1zlb)
Implementation: https://github.com/skokec/segdec-net-jim2019
The dataset consists of:
For each item the defect is only visible in at least one image, while two items have defects on two images, which means there were 52 images where the defects are visible. The remaining 347 images serve as negative examples with non-defective surfaces.
<br>👆 <b>BACK to Table of Contents</b> -->
👆 <b>BACK to Table of Contents</b> -->
b9uy)This dataset consists of 245 4096x256 pixel images with seven different fabric structures. There are 140 non-defect images in the dataset, 20 of each type of fabric. In addition, there are 105 images of different types of fabric defects (12 types) common in the textile industry. The image size allows users to use different window sizes, thereby the number of samples can be increased. The online dataset also contains segmentation masks of all defective images, so that white pixels represent defective areas and the remaining pixels are black.
<div align=center><img src="https://user-images.githubusercontent.com/29084184/114502747-d9363780-9c5e-11eb-9602-2b1b6de4e8d3.png"></div> <br>👆 <b>BACK to Table of Contents</b> -->


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地
