MobileSAM

MobileSAM

高效轻量化图像分割模型,适用于移动设备

MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。

MobileSAM图像分割计算机视觉AI模型深度学习Github开源项目
<p float="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/1c1895be-e979-47ce-aebf-2ad02a4c8ff2.png?raw=true" width="99.1%" /> </p>

更快的分割任何物体(MobileSAM)和分割所有物体(MobileSAMv2)

:pushpin: MobileSAMv2现已在ResearchGatearXiv上发布。它用物体感知的提示采样替代了SAM中的网格搜索提示采样,以实现更快的分割所有物体(SegEvery)

:pushpin: MobileSAM现已在ResearchGatearXiv上发布。它用轻量级图像编码器替代了SAM中的重量级图像编码器,以实现更快的分割任何物体(SegAny)

支持ONNX模型导出。欢迎在您的设备上测试并与我们分享结果。

MobileSAM的演示CPU上运行,可在hugging face演示上查看。在我们的Mac i5 CPU上,大约需要3秒。在hugging face演示中,由于界面和性能较差的CPU,速度会更慢,但仍然运行良好。敬请期待更多功能的新版本!您也可以在本地PC上运行MobileSAM的演示。

:grapes: 媒体报道和从SAM适配到MobileSAM的项目(感谢大家!)

MobileSAM

:star: MobileSAM是如何训练的? MobileSAM在单个GPU上使用10万个数据集(原始图像的1%)训练不到一天。训练代码将很快发布。

:star: 如何从SAM适配到MobileSAM? 由于MobileSAM完全保持了与原始SAM相同的流程,我们继承了原始SAM的预处理、后处理和所有其他接口。因此,假设除了更小的图像编码器外,其他一切都完全相同,那些将原始SAM用于项目的人几乎可以零成本地适配到MobileSAM

:star: MobileSAM的性能与原始SAM相当(至少在视觉上),并且除了图像编码器的变化外,完全保持了与原始SAM相同的流程。具体来说,我们用一个更小的Tiny-ViT(5M)替换了原始的重量级ViT-H编码器(632M)。在单个GPU上,MobileSAM每张图像运行约12ms:图像编码器8ms,掩码解码器4ms。

  • ViT基础图像编码器的比较如下:

    图像编码器原始SAMMobileSAM
    参数数量611M5M
    速度452ms8ms
  • 原始SAM和MobileSAM具有完全相同的提示引导掩码解码器:

    掩码解码器原始SAMMobileSAM
    参数数量3.876M3.876M
    速度4ms4ms
  • 整个流程的比较如下:

    整个流程(编码器+解码器)原始SAMMobileSAM
    参数数量615M9.66M
    速度456ms12ms

:star: 原始SAM和MobileSAM以点作为提示。

<p float="left"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/efa14e46-dde8-41c4-abed-5122e64c050a.jpg?raw=true" width="99.1%" /> </p>

:star: 原始SAM和MobileSAM以框作为提示。

<p float="left"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/6a6dbed3-1fbb-462f-afce-406428df405a.jpg?raw=true" width="99.1%" /> </p>

:muscle: MobileSAM是否比FastSAM更快、更小?是的! MobileSAM比同期的FastSAM小约7倍,快约5倍。 整个流程的比较如下:

整个流程(编码器+解码器)FastSAMMobileSAM
参数数量68M9.66M
速度64ms12ms

:muscle: MobileSAM是否比FastSAM更好地对齐原始SAM?是的! 建议FastSAM使用多个点,因此我们比较了两个提示点(具有不同像素距离)的mIoU,结果如下。更高的mIoU表示更好的对齐。

mIoUFastSAMMobileSAM
1000.270.73
2000.330.71
3000.370.74
4000.410.73
5000.410.73

安装

代码需要 python>=3.8,以及 pytorch>=1.7torchvision>=0.8。请按照这里的说明安装 PyTorch 和 TorchVision 依赖。强烈建议安装支持 CUDA 的 PyTorch 和 TorchVision。

安装 Mobile Segment Anything:

pip install git+https://github.com/ChaoningZhang/MobileSAM.git

或者在本地克隆仓库并安装:

git clone git@github.com:ChaoningZhang/MobileSAM.git
cd MobileSAM; pip install -e .

演示

安装 MobileSAM 后,您可以在本地 PC 上运行演示或查看我们的 HuggingFace 演示

它需要最新版本的 gradio

cd app
python app.py

<a name="GettingStarted"></a>入门

可以通过以下方式加载 MobileSAM:

from mobile_sam import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor

model_type = "vit_t"
sam_checkpoint = "./weights/mobile_sam.pt"

device = "cuda" if torch.cuda.is_available() else "cpu"

mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
mobile_sam.to(device=device)
mobile_sam.eval()

predictor = SamPredictor(mobile_sam)
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)

或为整个图像生成蒙版:

from mobile_sam import SamAutomaticMaskGenerator

mask_generator = SamAutomaticMaskGenerator(mobile_sam)
masks = mask_generator.generate(<your_image>)

<a name="GettingStarted"></a>入门(MobileSAMv2)

检查点下载模型权重。

下载模型权重后,可以简单地使用更快的 SegEvery 和 MobileSAMv2,如下所示:

cd MobileSAMv2
bash ./experiments/mobilesamv2.sh

ONNX 导出

MobileSAM 现在支持 ONNX 导出。使用以下命令导出模型:

python scripts/export_onnx_model.py --checkpoint ./weights/mobile_sam.pt --model-type vit_t --output ./mobile_sam.onnx

还可以查看 示例笔记本 以了解详细步骤。 我们建议使用经过测试的 onnx==1.12.0onnxruntime==1.13.1

我们 MobileSAM 的 BibTex

如果您在研究中使用 MobileSAM,请使用以下 BibTeX 条目。:mega: 谢谢!

@article{mobile_sam, title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications}, author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung-Ho and Lee, Seungkyu and Hong, Choong Seon}, journal={arXiv preprint arXiv:2306.14289}, year={2023} }

致谢

本工作得到了韩国政府(MSIT)资助的信息通信技术规划评估研究所(IITP)的支持(No.RS-2022-00155911,人工智能融合创新人力资源开发(庆熙大学))

<details> <summary> <a href="https://github.com/facebookresearch/segment-anything">SAM</a>(Segment Anything)[<b>bib</b>] </summary>
@article{kirillov2023segany, title={Segment Anything}, author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross}, journal={arXiv:2304.02643}, year={2023} }
</details> <details> <summary> <a href="https://github.com/microsoft/Cream/tree/main/TinyViT">TinyViT</a>(TinyViT: Fast Pretraining Distillation for Small Vision Transformers)[<b>bib</b>] </summary>
@InProceedings{tiny_vit, title={TinyViT: Fast Pretraining Distillation for Small Vision Transformers}, author={Wu, Kan and Zhang, Jinnian and Peng, Houwen and Liu, Mengchen and Xiao, Bin and Fu, Jianlong and Yuan, Lu}, booktitle={European conference on computer vision (ECCV)}, year={2022}
</details>

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多