Automated-Fact-Checking-Resources

Automated-Fact-Checking-Resources

自动事实核查资源库 数据集、模型与研究进展

该项目整理了自动事实核查领域的全面资源,包括最新数据集、模型和研究进展。涵盖从声明检测到结果预测的完整流程,并包含多模态事实核查内容。项目持续更新,为研究人员提供便捷的参考资料库。

自动事实核查数据集多模态虚假信息检测社交媒体Github开源项目

Automated Fact-Checking Resources

Maintenance Last Commit Contribution_welcome

Updates:

  • 2024.6: Added a section for LLM-generated text in Related Tasks. Added papers from EACL, NAACL, and AAAI 2024

Overview

This repo contains relevant resources from our survey paper A Survey on Automated Fact-Checking in TACL 2022 and the follow up multimodal survey paper Multimodal Automated Fact-Checking: A Survey. In this survey, we present a comprehensive and up-to-date survey of automated fact-checking (AFC), unifying various components and definitions developed in previous research into a common framework. As automated fact-checking research evolves, we will provide timely updates on the survey and this repo.

Task Definition

Figure below shows a NLP framework for automated fact-checking (AFC) with text consisting of three stages:

  1. Claim detection to identify claims that require verification;
  2. Evidence retrievalto find sources supporting or refuting the claim;
  3. Claim verification to assess the veracity of the claim based on the retrieved evidence.

Framework

Evidence retrieval and claim verification are sometimes tackled as a single task referred to asfactual verification, while claim detection is often tackled separately. Claim verificationcan be decomposed into two parts that can be tackled separately or jointly: verdict prediction, where claims are assigned truthfulness labels, and justification production, where explanations for verdicts must be produced.

In the follow up multimodal survey, we extends the first stage with a claim extraction step, and generalises the third stage to cover tasks that fall under multimodal AFC:

Framework

  1. Claim Detection and Extraction: multiple modalities can be required to understand and extract a claim at this stage. Simply detecting misleading content is often not enough – it is necessary to extract the claim before fact-checking it in the subsequent stages.
  2. Evidence Retrieval: similarly to fact-checking with text, multimodal fact-checking relies on evidence to make judgments.
  3. Verdict Prediction and Justification Production: it is decomposed into three tasks considering prevalent ways that multimodal misinformation can be conveyed:
    • Manipulation Classification: classify misinformative claims with manipulated content or correct claims accompanied by manipulated content.
    • Out-of-context Classification: detect unchanged content from a different context.
    • Veracity Classification: classify the veracity of textual claims given retrieved evidence.

Datasets

Claim Detection and Extraction Dataset

  • MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media (Hu et al., 2023) [Paper] [Dataset] SIGIR 2023
  • FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms (Qi et al., 2023) [Paper] [Dataset] AAAI 2023
  • SciTweets - A Dataset and Annotation Framework for Detecting Scientific Online Discourse (Hafid et al., 2022) [Paper] [Dataset] CIKM 2022
  • Empowering the Fact-checkers! Automatic Identification of Claim Spans on Twitter (Sundriyal et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Stanceosaurus: Classifying Stance Towards Multilingual Misinformation (Zheng et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Challenges and Opportunities in Information Manipulation Detection: An Examination of Wartime Russian Media (Park et al., 2022) [Paper] Findings EMNLP 2022
  • CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets (Mohr et al., 2022) [Paper] [Dataset] LREC 2021
  • MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset (Nielsen et al., 2022) [Paper] [Dataset] SIGIR 2021
  • STANKER: Stacking Network based on Level-grained Attention-masked BERT for Rumor Detection on Social Media (Rao et al., 2021) [Paper] [Dataset] EMNLP 2021
  • Fighting the COVID-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society (Alam et al., 2021) [Paper] [Dataset] Findings EMNLP 2021
  • Towards Automated Factchecking: Developing an Annotation Schema and Benchmark for Consistent Automated Claim Detection (Konstantinovskiy et al., 2021) [Paper] ACM Digital Threats: Research and Practice 2021
  • The CLEF-2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously Fact-Checked Claims, and Fake News (Nakov et al., 2021) [Paper] [Dataset]
  • Mining Dual Emotion for Fake News Detection (Zhang et al., 2021) [Paper] [Dataset] WWW 2021
  • Overview of CheckThat! 2020: Automatic Identification and Verification of Claims in Social Media (Barrón-Cedeño et al., 2020) [Paper] [Dataset]
  • Citation Needed: A Taxonomy and Algorithmic Assessment of Wikipedia's Verifiability (Redi et al., 2019) [Paper] [Dataset]
  • SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours (Gorrell et al., 2019). [Paper] [Dataset]
  • Joint Rumour Stance and Veracity (Lillie et al., 2019) [Paper] [Dataset]
  • Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness (Atanasova et al., 2018) [Paper] [Dataset]
  • Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter (Volkova et al., 2017) [Paper] [Dataset] ACL 2017
  • A Context-Aware Approach for Detecting Worth-Checking Claims in Political Debates (Gencheva et al., 2017) [Paper] [Dataset] RANLP 2017
  • Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs (Jin et al., 2017) [Paper] ACM MM 2017
  • SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours (Derczynski et al., 2017). [Paper] [Dataset]
  • Detecting Rumors from Microblogs with Recurrent Neural Networks (Ma et al., 2016) [Paper] [Dataset] IJCAI 2016
  • Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads (Zubiaga et al., 2016). [Paper] [Dataset] PLOS One 2016
  • CREDBANK: A Large-Scale Social Media Corpus with Associated Credibility Annotations (Mitra and Gilbert, 2015). [Paper] [Dataset] ICWSM 2015
  • Detecting Check-worthy Factual Claims in Presidential Debates (Hassan et al., 2015) [Paper] CIKM 2015

Verdict Prediction Dataset

Veracity Classification Dataset

Natural Claims
  • Do Large Language Models Know about Facts? (Xu et al., 2024) [Paper] [Dataset] [Code] ICLR 2024
  • What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification (Wührl et al., 2024) [Paper] [Dataset] EACL 2024
  • COVID-VTS: Fact Extraction and Verification on Short Video Platforms (Liu et al., 2023) [Paper] [Dataset] [Code] EACL 2023
  • End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models (Yao et al., 2023) [Paper] [Dataset] SIGIR 2023
  • Modeling Information Change in Science Communication with Semantically Matched Paraphrases (Wright et al., 2022) [Paper] [Dataset] [Code] EMNLP 2022
  • Generating Literal and Implied Subquestions to Fact-check Complex Claims (Chen et al., 2022) [Paper] [Dataset] EMNLP 2022
  • SciFact-Open: Towards open-domain scientific claim verification (Wadden et al., 2022) [Paper] [Dataset] EMNLP 2022
  • CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking (Hu et al., 2022) [Paper] [Dataset] NAACL 2022
  • WatClaimCheck: A new Dataset for Claim Entailment and Inference (Khan et al., 2022) [Paper] [Dataset] ACL 2022
  • Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context Images via Online Resources (Abdelnabi et al., 2022) [Paper] [Dataset] CVPR 2022
  • MMM: An Emotion and Novelty-aware Approach for Multilingual Multimodal Misinformation Detection (Gupta et al., 2022)

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多