Automated-Fact-Checking-Resources

Automated-Fact-Checking-Resources

自动事实核查资源库 数据集、模型与研究进展

该项目整理了自动事实核查领域的全面资源,包括最新数据集、模型和研究进展。涵盖从声明检测到结果预测的完整流程,并包含多模态事实核查内容。项目持续更新,为研究人员提供便捷的参考资料库。

自动事实核查数据集多模态虚假信息检测社交媒体Github开源项目

Automated Fact-Checking Resources

Maintenance Last Commit Contribution_welcome

Updates:

  • 2024.6: Added a section for LLM-generated text in Related Tasks. Added papers from EACL, NAACL, and AAAI 2024

Overview

This repo contains relevant resources from our survey paper A Survey on Automated Fact-Checking in TACL 2022 and the follow up multimodal survey paper Multimodal Automated Fact-Checking: A Survey. In this survey, we present a comprehensive and up-to-date survey of automated fact-checking (AFC), unifying various components and definitions developed in previous research into a common framework. As automated fact-checking research evolves, we will provide timely updates on the survey and this repo.

Task Definition

Figure below shows a NLP framework for automated fact-checking (AFC) with text consisting of three stages:

  1. Claim detection to identify claims that require verification;
  2. Evidence retrievalto find sources supporting or refuting the claim;
  3. Claim verification to assess the veracity of the claim based on the retrieved evidence.

Framework

Evidence retrieval and claim verification are sometimes tackled as a single task referred to asfactual verification, while claim detection is often tackled separately. Claim verificationcan be decomposed into two parts that can be tackled separately or jointly: verdict prediction, where claims are assigned truthfulness labels, and justification production, where explanations for verdicts must be produced.

In the follow up multimodal survey, we extends the first stage with a claim extraction step, and generalises the third stage to cover tasks that fall under multimodal AFC:

Framework

  1. Claim Detection and Extraction: multiple modalities can be required to understand and extract a claim at this stage. Simply detecting misleading content is often not enough – it is necessary to extract the claim before fact-checking it in the subsequent stages.
  2. Evidence Retrieval: similarly to fact-checking with text, multimodal fact-checking relies on evidence to make judgments.
  3. Verdict Prediction and Justification Production: it is decomposed into three tasks considering prevalent ways that multimodal misinformation can be conveyed:
    • Manipulation Classification: classify misinformative claims with manipulated content or correct claims accompanied by manipulated content.
    • Out-of-context Classification: detect unchanged content from a different context.
    • Veracity Classification: classify the veracity of textual claims given retrieved evidence.

Datasets

Claim Detection and Extraction Dataset

  • MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media (Hu et al., 2023) [Paper] [Dataset] SIGIR 2023
  • FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms (Qi et al., 2023) [Paper] [Dataset] AAAI 2023
  • SciTweets - A Dataset and Annotation Framework for Detecting Scientific Online Discourse (Hafid et al., 2022) [Paper] [Dataset] CIKM 2022
  • Empowering the Fact-checkers! Automatic Identification of Claim Spans on Twitter (Sundriyal et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Stanceosaurus: Classifying Stance Towards Multilingual Misinformation (Zheng et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Challenges and Opportunities in Information Manipulation Detection: An Examination of Wartime Russian Media (Park et al., 2022) [Paper] Findings EMNLP 2022
  • CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets (Mohr et al., 2022) [Paper] [Dataset] LREC 2021
  • MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset (Nielsen et al., 2022) [Paper] [Dataset] SIGIR 2021
  • STANKER: Stacking Network based on Level-grained Attention-masked BERT for Rumor Detection on Social Media (Rao et al., 2021) [Paper] [Dataset] EMNLP 2021
  • Fighting the COVID-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society (Alam et al., 2021) [Paper] [Dataset] Findings EMNLP 2021
  • Towards Automated Factchecking: Developing an Annotation Schema and Benchmark for Consistent Automated Claim Detection (Konstantinovskiy et al., 2021) [Paper] ACM Digital Threats: Research and Practice 2021
  • The CLEF-2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously Fact-Checked Claims, and Fake News (Nakov et al., 2021) [Paper] [Dataset]
  • Mining Dual Emotion for Fake News Detection (Zhang et al., 2021) [Paper] [Dataset] WWW 2021
  • Overview of CheckThat! 2020: Automatic Identification and Verification of Claims in Social Media (Barrón-Cedeño et al., 2020) [Paper] [Dataset]
  • Citation Needed: A Taxonomy and Algorithmic Assessment of Wikipedia's Verifiability (Redi et al., 2019) [Paper] [Dataset]
  • SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours (Gorrell et al., 2019). [Paper] [Dataset]
  • Joint Rumour Stance and Veracity (Lillie et al., 2019) [Paper] [Dataset]
  • Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness (Atanasova et al., 2018) [Paper] [Dataset]
  • Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter (Volkova et al., 2017) [Paper] [Dataset] ACL 2017
  • A Context-Aware Approach for Detecting Worth-Checking Claims in Political Debates (Gencheva et al., 2017) [Paper] [Dataset] RANLP 2017
  • Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs (Jin et al., 2017) [Paper] ACM MM 2017
  • SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours (Derczynski et al., 2017). [Paper] [Dataset]
  • Detecting Rumors from Microblogs with Recurrent Neural Networks (Ma et al., 2016) [Paper] [Dataset] IJCAI 2016
  • Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads (Zubiaga et al., 2016). [Paper] [Dataset] PLOS One 2016
  • CREDBANK: A Large-Scale Social Media Corpus with Associated Credibility Annotations (Mitra and Gilbert, 2015). [Paper] [Dataset] ICWSM 2015
  • Detecting Check-worthy Factual Claims in Presidential Debates (Hassan et al., 2015) [Paper] CIKM 2015

Verdict Prediction Dataset

Veracity Classification Dataset

Natural Claims
  • Do Large Language Models Know about Facts? (Xu et al., 2024) [Paper] [Dataset] [Code] ICLR 2024
  • What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification (Wührl et al., 2024) [Paper] [Dataset] EACL 2024
  • COVID-VTS: Fact Extraction and Verification on Short Video Platforms (Liu et al., 2023) [Paper] [Dataset] [Code] EACL 2023
  • End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models (Yao et al., 2023) [Paper] [Dataset] SIGIR 2023
  • Modeling Information Change in Science Communication with Semantically Matched Paraphrases (Wright et al., 2022) [Paper] [Dataset] [Code] EMNLP 2022
  • Generating Literal and Implied Subquestions to Fact-check Complex Claims (Chen et al., 2022) [Paper] [Dataset] EMNLP 2022
  • SciFact-Open: Towards open-domain scientific claim verification (Wadden et al., 2022) [Paper] [Dataset] EMNLP 2022
  • CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking (Hu et al., 2022) [Paper] [Dataset] NAACL 2022
  • WatClaimCheck: A new Dataset for Claim Entailment and Inference (Khan et al., 2022) [Paper] [Dataset] ACL 2022
  • Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context Images via Online Resources (Abdelnabi et al., 2022) [Paper] [Dataset] CVPR 2022
  • MMM: An Emotion and Novelty-aware Approach for Multilingual Multimodal Misinformation Detection (Gupta et al., 2022)

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多