Awesome-Multimodal-Large-Language-Models

Awesome-Multimodal-Large-Language-Models

多模态大语言模型研究资源与最新进展汇总

该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。

多模态大语言模型视觉语言模型指令微调视频理解模型评估Github开源项目

Awesome-Multimodal-Large-Language-Models

Our MLLM works

🔥🔥🔥 A Survey on Multimodal Large Language Models
Project Page [This Page] | Paper

The first comprehensive survey for Multimodal Large Language Models (MLLMs). :sparkles: </div>

Welcome to add WeChat ID (wmd_ustc) to join our MLLM communication group! :star2: </div>


🔥🔥🔥 VITA: Towards Open-Source Interactive Omni Multimodal LLM

<p align="center"> <img src="./images/vita.png" width="80%" height="80%"> </p>

<font size=7><div align='center' > [🍎 Project Page] [📖 arXiv Paper] [🌼 GitHub] </div></font>

[2024.08.12] We are announcing VITA, the first-ever open-source Multimodal LLM that can process Video, Image, Text, and Audio, and meanwhile has an advanced multimodal interactive experience. 🌟

<b>Omni Multimodal Understanding</b>. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. ✨

<b>Non-awakening Interaction</b>. VITA can be activated and respond to user audio questions in the environment without the need for a wake-up word or button. ✨

<b>Audio Interrupt Interaction</b>. VITA is able to simultaneously track and filter external queries in real-time. This allows users to interrupt the model's generation at any time with new questions, and VITA will respond to the new query accordingly. ✨


🔥🔥🔥 Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis

<p align="center"> <img src="./images/videomme.jpg" width="80%" height="80%"> </p>

<font size=7><div align='center' > [🍎 Project Page] [📖 arXiv Paper] [📊 Dataset][🏆 Leaderboard] </div></font>

[2024.06.03] We are very proud to launch Video-MME, the first-ever comprehensive evaluation benchmark of MLLMs in Video Analysis! 🌟

It applies to both <b>image MLLMs</b>, i.e., generalizing to multiple images, and <b>video MLLMs</b>. Our leaderboard involes SOTA models like Gemini 1.5 Pro, GPT-4o, GPT-4V, LLaVA-NeXT-Video, InternVL-Chat-V1.5, and Qwen-VL-Max. 🌟

It includes both <b>short- (< 2min)</b>, <b>medium- (4min~15min)</b>, and <b>long-term (30min~60min)</b> videos, ranging from <b>11 seconds to 1 hour</b>. ✨

<b>All data are newly collected and annotated by humans, not from any existing video dataset</b>. ✨


🔥🔥🔥 MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models
Project Page [Leaderboards] | Paper | :black_nib: Citation

A comprehensive evaluation benchmark for MLLMs. Now the leaderboards include 50+ advanced models, such as Qwen-VL-Max, Gemini Pro, and GPT-4V. :sparkles:

If you want to add your model in our leaderboards, please feel free to email bradyfu24@gmail.com. We will update the leaderboards in time. :sparkles:

<details><summary>Download MME :star2::star2: </summary>

The benchmark dataset is collected by Xiamen University for academic research only. You can email yongdongluo@stu.xmu.edu.cn to obtain the dataset, according to the following requirement.

Requirement: A real-name system is encouraged for better academic communication. Your email suffix needs to match your affiliation, such as xx@stu.xmu.edu.cn and Xiamen University. Otherwise, you need to explain why. Please include the information bellow when sending your application email.

Name: (tell us who you are.)
Affiliation: (the name/url of your university or company)
Job Title: (e.g., professor, PhD, and researcher)
Email: (your email address)
How to use: (only for non-commercial use)
</details>

<br> 📑 If you find our projects helpful to your research, please consider citing: <br>

@article{fu2023mme,
  title={MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models},
  author={Fu, Chaoyou and Chen, Peixian and Shen, Yunhang and Qin, Yulei and Zhang, Mengdan and Lin, Xu and Yang, Jinrui and Zheng, Xiawu and Li, Ke and Sun, Xing and others},
  journal={arXiv preprint arXiv:2306.13394},
  year={2023}
}

@article{fu2024vita,
  title={VITA: Towards Open-Source Interactive Omni Multimodal LLM},
  author={Fu, Chaoyou and Lin, Haojia and Long, Zuwei and Shen, Yunhang and Zhao, Meng and Zhang, Yifan and Wang, Xiong and Yin, Di and Ma, Long and Zheng, Xiawu and He, Ran and Ji, Rongrong and Wu, Yunsheng and Shan, Caifeng and Sun, Xing},
  journal={arXiv preprint arXiv:2408.05211},
  year={2024}
}

@article{fu2024video,
  title={Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis},
  author={Fu, Chaoyou and Dai, Yuhan and Luo, Yondong and Li, Lei and Ren, Shuhuai and Zhang, Renrui and Wang, Zihan and Zhou, Chenyu and Shen, Yunhang and Zhang, Mengdan and others},
  journal={arXiv preprint arXiv:2405.21075},
  year={2024}
}

@article{yin2023survey,
  title={A survey on multimodal large language models},
  author={Yin, Shukang and Fu, Chaoyou and Zhao, Sirui and Li, Ke and Sun, Xing and Xu, Tong and Chen, Enhong},
  journal={arXiv preprint arXiv:2306.13549},
  year={2023}
}


<font size=5><center><b> Table of Contents </b> </center></font>


Awesome Papers

Multimodal Instruction Tuning

TitleVenueDateCodeDemo
Star <br> mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models <br>arXiv2024-08-09Github-
Star <br> VITA: Towards Open-Source Interactive Omni Multimodal LLM <br>arXiv2024-08-09Github-
Star <br> LLaVA-OneVision: Easy Visual Task Transfer <br>arXiv2024-08-06GithubDemo
Star <br> MiniCPM-V: A GPT-4V Level MLLM on Your Phone <br>arXiv2024-08-03GithubDemo
VILA^2: VILA Augmented VILAarXiv2024-07-24--
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language ModelsarXiv2024-07-22--
EVLM: An Efficient Vision-Language Model for Visual UnderstandingarXiv2024-07-19--
Star <br> InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input and Output <br>arXiv2024-07-03GithubDemo
Star <br> OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding <br>arXiv2024-06-27GithubLocal Demo
Star <br> Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs <br>arXiv2024-06-24GithubLocal Demo
Star <br> Long Context Transfer from Language to Vision <br>arXiv2024-06-24GithubLocal Demo
Star <br> Unveiling Encoder-Free Vision-Language Models <br>arXiv2024-06-17GithubLocal Demo
Star <br> Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models <br>arXiv2024-06-12Github-
Star <br> VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs <br>arXiv2024-06-11GithubLocal Demo
Star <br> Parrot: Multilingual Visual Instruction Tuning <br>arXiv2024-06-04Github-
Star <br> Ovis: Structural Embedding Alignment for Multimodal Large Language Model <br>arXiv2024-05-31Github-
Star <br> Matryoshka Query Transformer for Large Vision-Language Models <br>arXiv2024-05-29GithubDemo
Star <br> ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models <br>arXiv2024-05-24Github-
Star <br> Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models <br>arXiv2024-05-24GithubDemo
Star <br> [**Libra: Building Decoupled

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多