推动计算机视觉进入新时代的可扩展视觉语言模型
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
🔥 已得到timm和OpenCLIP的官方支持。感谢@rwightman!
一行代码调用ViTamin:
model = timm.create_model('vitamin_xlarge_384')
ViTamin-XL仅有436M参数,在公开的DataComp-1B数据集上训练,实现了令人印象深刻的**82.9%**零样本ImageNet准确率。
ViTamin-L在七个开放词汇分割基准测试中创下新的最高水平,并显著提升了大型多模态 模型(如LLaVA)的能力。
🤗 ViTamin模型卡片的HuggingFace集合已发布!查看模型卡片!
<p> <img src="https://yellow-cdn.veclightyear.com/835a84d5/ce76eb9a-020b-4e7d-8a34-0f68a8a9d682.png" alt="teaser" width=90% height=90%> </p>目前包括以下任务的代码和模型:
ViTamin预训练:查看./ViTamin/README.md快速入门,包含CLIP预训练/微调流程和零样本评估流程。
开放词汇检测和分割:查看用于开放词汇检测的ViTamin和用于开放词汇分割的ViTamin。
大型多模态模型:查看用于大型多模态模型的ViTamin。
我们还支持使用Hugging Face模型jienengchen/ViTamin-XL-384px的ViTamin。
import torch import open_clip from PIL import Image from transformers import AutoModel, CLIPImageProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModel.from_pretrained( 'jienengchen/ViTamin-XL-384px', trust_remote_code=True).to(device).eval() image = Image.open('./image.png').convert('RGB') image_processor = CLIPImageProcessor.from_pretrained('jienengchen/ViTamin-XL-384px') pixel_values = image_processor(images=image, return_tensors='pt').pixel_values pixel_values = pixel_values.to(torch.bfloat16).cuda() tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K') text = tokenizer(["a photo of vitamin", "a dog", "a cat"]).to(device) with torch.no_grad(), torch.cuda.amp.autocast(): image_features, text_features, logit_scale = model(pixel_values, text) text_probs = (100.0 * image_features @ text_features.to(torch.float).T).softmax(dim=-1) print("Label probs:", text_probs)
我们将在Hugging Face上提供61个训练好的VLM(48个基准测试 + 13个最佳表现)供社区使用。敬请期待!
图像编码器 | 🤗 HuggingFace | 图像尺寸 | 区块数 | 文本编码器深度/宽度 | 已见样本数 (B) | 可训练参数数量 图像+文本 (M) | MACs 图像+文本 (G) | ImageNet准确率 | 38个数据集平均值 | ImageNet分布偏移 | VTAB | 检 索 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ViTamin-L | 链接 | 224 | 196 | 12/768 | 12.8 | 333.3+123.7 | 72.6+6.6 | 80.8 | 66.7 | 69.8 | 65.3 | 60.3 |
ViTamin-L | 链接 | 256 | 256 | 12/768 | 12.8+0.2 | 333.4+123.7 | 94.8+6.6 | 81.2 | 67.0 | 71.1 | 65.3 | 61.2 |
ViTamin-L | 链接 | 336 | 441 | 12/768 | 12.8+0.2 | 333.6+123.7 | 163.4+6.6 | 81.6 | 67.0 | 72.1 | 64.4 | 61.6 |
ViTamin-L | 链接 | 384 | 576 | 12/768 | 12.8+0.2 | 333.7+123.7 | 213.4+6.6 | 81.8 | 67.2 | 72.4 | 64.7 | 61.8 |
ViTamin-L2 | 链接 | 224 | 196 | 24/1024 | 12.8 | 333.6+354.0 | 72.6+23.3 | 80.9 | 66.4 | 70.6 | 63.4 | 61.5 |
ViTamin-L2 | 链接 | 256 | 256 | 24/1024 | 12.8+0.5 | 333.6+354.0 | 94.8+23.3 | 81.5 | 67.4 | 71.9 | 64.1 | 63.1 |
ViTamin-L2 | 链接 | 336 | 441 | 24/1024 | 12.8+0.5 | 333.8+354.0 | 163.4+23.3 | 81.8 | 67.8 | 73.0 | 64.5 | 63.6 |
ViTamin-L2 | 链接 | 384 | 576 | 24/1024 | 12.8+0.5 | 334.0+354.0 | 213.4+23.3 | 82.1 | 68.1 | 73.4 | 64.8 | 63.7 |
ViTamin-XL | 链接 | 256 | 256 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 125.3+33.1 | 82.1 | 67.6 | 72.3 | 65.4 | 62.7 |
ViTamin-XL | 链接 | 384 | 576 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 281.9+33.1 | 82.6 | 68.1 | 73.6 | 65.6 | 63.8 |
ViTamin-XL | 链接 | 256 | 256 | 27/1152 | 40 | 436.1+488.7 | 125.3+33.1 | 82.3 | 67.5 | 72.8 | 64.0 | 62.1 |
ViTamin-XL | 链接 | 336 | 441 | 27/1152 | 40+1 | 436.1+488.7 | 215.9+33.1 | 82.7 | 68.0 | 73.9 | 64.1 | 62.6 |
ViTamin-XL | 链接 | 384 | 576 | 27/1152 | 40+1 | 436.1+488.7 | 281.9+33.1 | 82.9 | 68.1 | 74.1 | 64.0 | 62.5 |
开放词汇检测
图像编码器 | 检测器 | OV-COCO (AP<sub>50</sub><sup>novel</sup>) | OV-LVIS (AP<sub>r</sub>) |
---|---|---|---|
ViT-L/14 | Sliding F-ViT | 36.1 | 32.5 |
ViTamin-L | Sliding F-ViT | 37.5 | 35.6 |
开放词汇分割
图像编码器 | 分割器 | ADE | Cityscapes | MV | A-150 | A-847 | PC-459 | PC-59 | PAS-21 |
---|---|---|---|---|---|---|---|---|---|
ViT-L/14 | Sliding FC-CLIP | 24.6 | 40.7 | 16.5 | 31.8 | 14.3 | 18.3 | 55.1 | 81.5 |
ViTamin-L | Sliding FC-CLIP | 27.3 | 44.0 | 18.2 | 35.6 | 16.1 | 20.4 | 58.4 | 83.4 |
注:全景数据集(ADE、CityScapes、MV)使用PQ指标。语义数据集(A-150、A-847、PC-459、PC-59、PAS-21)使用mIoU指标。
大型多模态模型
图像编码器 | 图像尺寸 | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-B-CN | SEED | LLaVA-Wild | MM-Vet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ViTamin-L | 336 | 78.4 | 61.6 | 51.1 | 66.9 | 58.7 | 84.6 | 1421 | 65.4 | 58.4 | 57.7 | 64.5 | 33.6 |
ViTamin-L | 384 | 78.9 | 61.6 | 55.4 | 67.6 | 59.8 | 85.5 | 1447 | 64.5 | 58.3 | 57.9 | 66.1 | 33.6 |
@inproceedings{chen2024vitamin,
title={ViTamin:在视觉语言时代设计可扩展的视觉模型},
author={陈杰能 and 于启航 and 沈晓辉 and Yuille, Alan and 陈良杰},
booktitle={IEEE/CVF 计算机视觉与模式识别会议论文集},
year={2024}
}
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电 商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程 ,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是 商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号