BMW-TensorFlow-Training-GUI

BMW-TensorFlow-Training-GUI

简化TensorFlow 2模型训练的工具

此开源项目提供用户轻松开始TensorFlow 2深度学习模型训练的工具。用户仅需提供标注数据集,并通过TensorBoard监控训练过程。项目支持内置推理REST API,CUDA 11以及多GPU训练,推荐在Ubuntu 18.04和Google Chrome浏览器环境下使用。

TensorflowDockerTensorBoardGPUDeep LearningGithub开源项目

项目介绍:BMW-TensorFlow-Training-GUI

项目概述

BMW-TensorFlow-Training-GUI是一个专为Linux环境设计的深度学习训练工具,支持CUDA 11和TensorFlow 2。该项目旨在使用户能够以最少的配置,便捷地训练先进的深度学习模型。用户只需提供标注好的数据集即可开始训练,同时可通过TensorBoard实时监控训练过程,并利用内置的推断REST API测试模型。BMW还提供了用于数据标注的辅助工具BMW-Labeltool-Lite。

项目的优势

  • 易用性:只需少量配置即可开始训练,并通过GUI进行操作和监控。
  • 多方式支持:支持在CPU和多个GPU(最多2个)上进行训练。
  • 样本兼容:支持直接使用由BMW-Labeltool-Lite标注的数据集。
  • 预训练模型:可以利用基于COCO数据集的预训练模型权重快速开始训练。

安装前提

要运行此项目,用户需确保以下软件已在Ubuntu 18.04系统上安装:

  • NVIDIA驱动(至少版本418.x)
  • 最新稳定版的Docker CE
  • NVIDIA Docker 2
  • Docker-Compose

项目设置

该项目设置支持自动和手动两种方式。通过自动设置脚本,用户可以快速检查并安装所需软件,并选择训练解决方案的构建架构(GPU/CPU)。在手动设置中,通过不同的命令检查并安装所需的软件和驱动程序。

数据集结构

数据集应按照规定的目录结构组织:

├──datasets/
    ├──sample_dataset/
        ├── images
        │   ├── img_1.jpg
        │   └── img_2.jpg
        ├── labels
        │   ├── json
        │   │   ├── img_1.json
        │   │   └── img_2.json
        │   └── pascal
        │       ├── img_1.xml
        │       └── img_2.xml
        └── objectclasses.json

重量级解决方案

该工具提供两种训练权重下载策略:

  • 中量级:按照需求在线下载特定的预训练模型权重。
  • 重量级:默认下载所有在线支持的预训练模型权重。

项目构建

为在不同模式下部署训练工作流,请在项目根目录执行相应的命令:

  • GPU模式: docker-compose -f build_gpu.yml build
  • CPU模式: docker-compose -f build_cpu.yml build

项目运行

在部署后运行项目的命令如下:

  • GPU模式: docker-compose -f run_gpu.yml up
  • CPU模式: docker-compose -f run_cpu.yml up

使用指南

用户可以通过浏览器访问部署的应用,地址通常为localhost:4200127.0.0.1:4200。项目的使用步骤包括准备数据集、指定一般设置、配置超参数、监控训练、下载并测试模型等。

常见问题

在项目运行中可能出现的一些常见问题及其解决方案已在文档中列出,包括容器命名问题、图像不支持问题等。

致谢

项目得以顺利进行和拓展,需特别感谢来自inmind.ai和BMW Innovation Lab团队的贡献者们。

引用方式

如在研究中使用此项目,请使用提供的Bibtex条目进行引用:

@misc{bmwtrainingtool,
  author = {BMW TechOffice MUNICH},
  title = {TensorFlow Training GUI},
  year = {2022},
}

通过易于理解的界面和详尽的指导文档,BMW-TensorFlow-Training-GUI为用户提供了一个功能强大且直观的训练环境,大大简化了深度学习模型的训练流程。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多