
轻量高效多模态模型支持高分辨率图像分析
Bunny是一个轻量高效的多模态模型家族,集成多种视觉编码器和语言骨干网络。该项目通过优化训练数据提升小规模模型性能,其中Bunny-Llama-3-8B-V模型支持1152x1152分辨率图像处理,在多项视觉语言任务中表现优异。Bunny为开发者提供了灵活的多模态AI解决方案。
📖 Technical report | 🤗 Data | 🤖 Data | 🤗 HFSpace 🐰 Demo
Bunny-Llama-3-8B-V: 🤗 v1.1 | 🤗 v1.0 | 🤗 v1.0-GGUF
Bunny-4B: 🤗 v1.1 | 🤗 v1.0 | 🤗 v1.0-GGUF
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-3-mini, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.
We are thrilled to introduce Bunny-Llama-3-8B-V, the pioneering vision-language model based on Llama-3, showcasing exceptional performance. The v1.1 version accepts high-resolution images up to 1152x1152.

Moreover, our Bunny-4B model built upon SigLIP and Phi-3-mini outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B and 13B). Also, the v1.1 version accepts high-resolution images up to 1152x1152.
<details> <summary>Expand to see the performance of Bunny-4B</summary> <IMG src="comparison_4B.png"/> </details>2024.07.23 🔥 All of the training strategy and data of latest Bunny is released! Check more details about Bunny in Technical Report, Data and Training Tutorial!
2024.07.21 🔥 SpatialBot, SpatialQA and SpatialBench are released! SpatialBot is an embodiment model based on Bunny, which comprehends spatial relationships by understanding and using depth information. Try model, dataset and benchmark at GitHub!
2024.06.20 🔥 MMR benchmark is released! It is a benchmark for measuring MLLMs' understanding ability and their robustness against misleading questions. Check the performance of Bunny and more details in GitHub!
2024.06.01 🔥 Bunny-v1.1-Llama-3-8B-V, supporting 1152x1152 resolution, is released! It is built upon SigLIP and Llama-3-8B-Instruct with S$^2$-Wrapper. Check more details in HuggingFace and wisemodel! 🐰 Demo
2024.05.08 Bunny-v1.1-4B, supporting 1152x1152 resolution, is released! It is built upon SigLIP and Phi-3-Mini-4K 3.8B with S$^2$-Wrapper. Check more details in HuggingFace! 🐰 Demo
2024.05.01 Bunny-v1.0-4B, a vision-language model based on Phi-3, is released! It is built upon SigLIP and Phi-3-Mini-4K 3.8B. Check more details in HuggingFace! 🤗 GGUF
2024.04.21 Bunny-Llama-3-8B-V, the first vision-language model based on Llama-3, is released! It is built upon SigLIP and Llama-3-8B-Instruct. Check more details in HuggingFace, ModelScope, and wisemodel! The GGUF format is in HuggingFace and wisemodel.
2024.04.18 Bunny-v1.0-3B-zh, powerful on English and Chinese, is released! It is built upon SigLIP and MiniCPM-2B. Check more details in HuggingFace, ModelScope, and wisemodel! The evaluation results are in the Evaluation. We sincerely thank Zhenwei Shao for his kind help.
2024.03.15 Bunny-v1.0-2B-zh, focusing on Chinese, is released! It is built upon SigLIP and Qwen1.5-1.8B. Check more details in HuggingFace, ModelScope, and wisemodel! The evaluation results are in the Evaluation.
2024.03.06 Bunny training data is released! Check more details about Bunny-v1.0-data in HuggingFace or ModelScope!
2024.02.20 Bunny technical report is ready! Check more details about Bunny here!
2024.02.07 Bunny is released! Bunny-v1.0-3B built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B), and even achieves performance on par with LLaVA-13B! 🤗 Bunny-v1.0-3B
Here we show a code snippet to show you how to use Bunny-v1.1-Llama-3-8B-V, Bunny-v1.1-4B, Bunny-v1.0-3B and so on with HuggingFace transformers.
This snippet is only used for above models because we manually combine some configuration code into a single file for users' convenience. For example, you can check modeling_bunny_llama.py and configuration_bunny_llama.py and their related parts in the source code of Bunny to see the difference. For other models including models trained by yourself, we recommend loading them with installing the source code of Bunny. Or you can copy files like modeling_bunny_llama.py and configuration_bunny_llama.py into your model and modify auto_map in config.json, but we can't guarantee its correctness and you may need to modify some code to fit your model.
Before running the snippet, you need to install the following dependencies:
pip install torch transformers accelerate pillow
If the CUDA memory is enough, it would be faster to execute this snippet by setting CUDA_VISIBLE_DEVICES=0.
Users especially those in Chinese mainland may want to refer to a HuggingFace mirror site.
import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu torch.set_default_device(device) model_name = 'BAAI/Bunny-v1_1-Llama-3-8B-V' # or 'BAAI/Bunny-Llama-3-8B-V' or 'BAAI/Bunny-v1_1-4B' or 'BAAI/Bunny-v1_0-4B' or 'BAAI/Bunny-v1_0-3B' or 'BAAI/Bunny-v1_0-3B-zh' or 'BAAI/Bunny-v1_0-2B-zh' offset_bos = 1 # for Bunny-v1_1-Llama-3-8B-V, Bunny-Llama-3-8B-V, Bunny-v1_1-4B, Bunny-v1_0-4B and Bunny-v1_0-3B-zh # offset_bos = 0 for Bunny-v1_0-3B and Bunny-v1_0-2B-zh # create model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'Why is the image funny?' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) # image, sample images can be found in https://huggingface.co/BAAI/Bunny-v1_1-Llama-3-8B-V/tree/main/images image = Image.open('example_2.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
We advise users especially those in Chinese mainland to use ModelScope.
snapshot_download can help you solve issues concerning downloading checkpoints.
Before running the snippet, you need to install the following dependencies:
pip install torch modelscope transformers accelerate pillow
If the CUDA memory is enough, it would be faster to execute this snippet by setting CUDA_VISIBLE_DEVICES=0.
</details>import torch import transformers from modelscope import AutoTokenizer, AutoModelForCausalLM from modelscope.hub.snapshot_download import snapshot_download from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu torch.set_default_device(device) model_name = 'BAAI/Bunny-Llama-3-8B-V' # or 'BAAI/Bunny-v1.0-3B' or 'BAAI/Bunny-v1.0-3B-zh' or 'BAAI/Bunny-v1.0-2B-zh' offset_bos = 1 # for Bunny-Llama-3-8B-V and Bunny-v1.0-3B-zh # offset_bos = 0 for Bunny-v1.0-3B and Bunny-v1.0-2B-zh # create model snapshot_download(model_id='thomas/siglip-so400m-patch14-384') model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'Why is the image funny?' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) # image, sample images can be found in images folder on https://www.modelscope.cn/models/BAAI/Bunny-Llama-3-8B-V/files image = Image.open('example_2.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
| Checkpoint | MME$^\text{P}$ | MME$^\text{C}$ | MMB$^{\text{T}/\text{D}}$ | MMB-CN$^{\text{T}/ \text{D}}$ | SEED(-IMG) | MMMU$^{\text{V}/\text{T}}$ | VQA$^\text{v2}$ | GQA | SQA$^\text{I}$ | POPE |
|---|---|---|---|---|---|---|---|---|---|---|
| bunny-phi-1.5-eva-lora | 1213.7 | 278.9 | 60.9/56.8 | - | 56.4/64.1 | 30.0/28.4 | 76.5 | 60.4 | 58.2 | 86.1 |


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号