Bunny

Bunny

轻量高效多模态模型支持高分辨率图像分析

Bunny是一个轻量高效的多模态模型家族,集成多种视觉编码器和语言骨干网络。该项目通过优化训练数据提升小规模模型性能,其中Bunny-Llama-3-8B-V模型支持1152x1152分辨率图像处理,在多项视觉语言任务中表现优异。Bunny为开发者提供了灵活的多模态AI解决方案。

Bunny多模态模型视觉语言模型轻量级模型AI模型Github开源项目

Bunny: A family of lightweight multimodal models

<p align="center"> <img src="./icon.png" alt="Logo" width="350"> </p>

📖 Technical report | 🤗 Data | 🤖 Data | 🤗 HFSpace 🐰 Demo

Bunny-Llama-3-8B-V: 🤗 v1.1 | 🤗 v1.0 | 🤗 v1.0-GGUF

Bunny-4B: 🤗 v1.1 | 🤗 v1.0 | 🤗 v1.0-GGUF

Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-3-mini, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.

We are thrilled to introduce Bunny-Llama-3-8B-V, the pioneering vision-language model based on Llama-3, showcasing exceptional performance. The v1.1 version accepts high-resolution images up to 1152x1152.

comparison_8B

Moreover, our Bunny-4B model built upon SigLIP and Phi-3-mini outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B and 13B). Also, the v1.1 version accepts high-resolution images up to 1152x1152.

<details> <summary>Expand to see the performance of Bunny-4B</summary> <IMG src="comparison_4B.png"/> </details>

News and Updates

  • 2024.07.23 🔥 All of the training strategy and data of latest Bunny is released! Check more details about Bunny in Technical Report, Data and Training Tutorial!

  • 2024.07.21 🔥 SpatialBot, SpatialQA and SpatialBench are released! SpatialBot is an embodiment model based on Bunny, which comprehends spatial relationships by understanding and using depth information. Try model, dataset and benchmark at GitHub!

  • 2024.06.20 🔥 MMR benchmark is released! It is a benchmark for measuring MLLMs' understanding ability and their robustness against misleading questions. Check the performance of Bunny and more details in GitHub!

  • 2024.06.01 🔥 Bunny-v1.1-Llama-3-8B-V, supporting 1152x1152 resolution, is released! It is built upon SigLIP and Llama-3-8B-Instruct with S$^2$-Wrapper. Check more details in HuggingFace and wisemodel! 🐰 Demo

  • 2024.05.08 Bunny-v1.1-4B, supporting 1152x1152 resolution, is released! It is built upon SigLIP and Phi-3-Mini-4K 3.8B with S$^2$-Wrapper. Check more details in HuggingFace! 🐰 Demo

  • 2024.05.01 Bunny-v1.0-4B, a vision-language model based on Phi-3, is released! It is built upon SigLIP and Phi-3-Mini-4K 3.8B. Check more details in HuggingFace! 🤗 GGUF

  • 2024.04.21 Bunny-Llama-3-8B-V, the first vision-language model based on Llama-3, is released! It is built upon SigLIP and Llama-3-8B-Instruct. Check more details in HuggingFace, ModelScope, and wisemodel! The GGUF format is in HuggingFace and wisemodel.

  • 2024.04.18 Bunny-v1.0-3B-zh, powerful on English and Chinese, is released! It is built upon SigLIP and MiniCPM-2B. Check more details in HuggingFace, ModelScope, and wisemodel! The evaluation results are in the Evaluation. We sincerely thank Zhenwei Shao for his kind help.

  • 2024.03.15 Bunny-v1.0-2B-zh, focusing on Chinese, is released! It is built upon SigLIP and Qwen1.5-1.8B. Check more details in HuggingFace, ModelScope, and wisemodel! The evaluation results are in the Evaluation.

  • 2024.03.06 Bunny training data is released! Check more details about Bunny-v1.0-data in HuggingFace or ModelScope!

  • 2024.02.20 Bunny technical report is ready! Check more details about Bunny here!

  • 2024.02.07 Bunny is released! Bunny-v1.0-3B built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B), and even achieves performance on par with LLaVA-13B! 🤗 Bunny-v1.0-3B

Quickstart

HuggingFace transformers

Here we show a code snippet to show you how to use Bunny-v1.1-Llama-3-8B-V, Bunny-v1.1-4B, Bunny-v1.0-3B and so on with HuggingFace transformers.

This snippet is only used for above models because we manually combine some configuration code into a single file for users' convenience. For example, you can check modeling_bunny_llama.py and configuration_bunny_llama.py and their related parts in the source code of Bunny to see the difference. For other models including models trained by yourself, we recommend loading them with installing the source code of Bunny. Or you can copy files like modeling_bunny_llama.py and configuration_bunny_llama.py into your model and modify auto_map in config.json, but we can't guarantee its correctness and you may need to modify some code to fit your model.

Before running the snippet, you need to install the following dependencies:

pip install torch transformers accelerate pillow

If the CUDA memory is enough, it would be faster to execute this snippet by setting CUDA_VISIBLE_DEVICES=0.

Users especially those in Chinese mainland may want to refer to a HuggingFace mirror site.

import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu torch.set_default_device(device) model_name = 'BAAI/Bunny-v1_1-Llama-3-8B-V' # or 'BAAI/Bunny-Llama-3-8B-V' or 'BAAI/Bunny-v1_1-4B' or 'BAAI/Bunny-v1_0-4B' or 'BAAI/Bunny-v1_0-3B' or 'BAAI/Bunny-v1_0-3B-zh' or 'BAAI/Bunny-v1_0-2B-zh' offset_bos = 1 # for Bunny-v1_1-Llama-3-8B-V, Bunny-Llama-3-8B-V, Bunny-v1_1-4B, Bunny-v1_0-4B and Bunny-v1_0-3B-zh # offset_bos = 0 for Bunny-v1_0-3B and Bunny-v1_0-2B-zh # create model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'Why is the image funny?' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) # image, sample images can be found in https://huggingface.co/BAAI/Bunny-v1_1-Llama-3-8B-V/tree/main/images image = Image.open('example_2.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())

ModelScope

We advise users especially those in Chinese mainland to use ModelScope. snapshot_download can help you solve issues concerning downloading checkpoints.

<details> <summary>Expand to see the snippet</summary>

Before running the snippet, you need to install the following dependencies:

pip install torch modelscope transformers accelerate pillow

If the CUDA memory is enough, it would be faster to execute this snippet by setting CUDA_VISIBLE_DEVICES=0.

import torch import transformers from modelscope import AutoTokenizer, AutoModelForCausalLM from modelscope.hub.snapshot_download import snapshot_download from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu torch.set_default_device(device) model_name = 'BAAI/Bunny-Llama-3-8B-V' # or 'BAAI/Bunny-v1.0-3B' or 'BAAI/Bunny-v1.0-3B-zh' or 'BAAI/Bunny-v1.0-2B-zh' offset_bos = 1 # for Bunny-Llama-3-8B-V and Bunny-v1.0-3B-zh # offset_bos = 0 for Bunny-v1.0-3B and Bunny-v1.0-2B-zh # create model snapshot_download(model_id='thomas/siglip-so400m-patch14-384') model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'Why is the image funny?' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) # image, sample images can be found in images folder on https://www.modelscope.cn/models/BAAI/Bunny-Llama-3-8B-V/files image = Image.open('example_2.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
</details>

Model Zoo

Evaluation

CheckpointMME$^\text{P}$MME$^\text{C}$MMB$^{\text{T}/\text{D}}$MMB-CN$^{\text{T}/ \text{D}}$SEED(-IMG)MMMU$^{\text{V}/\text{T}}$VQA$^\text{v2}$GQASQA$^\text{I}$POPE
bunny-phi-1.5-eva-lora1213.7278.960.9/56.8-56.4/64.130.0/28.476.560.458.286.1

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多