contoso-chat

contoso-chat

Azure AI Studio打造智能零售对话系统

项目展示了使用Azure AI Studio和Promptflow构建智能零售对话系统的方法。系统采用检索增强生成模式,结合产品目录和客户购买历史来回答查询。开发者可学习提示工程、评估运行、解决方案部署和负责任AI实践。项目提供模型配置示例、对话和评估提示、Prompty资产及应用代码,适合开发零售AI助手的团队参考。

Azure AI StudioPromptflowRAGAzure OpenAIContoso ChatGithub开源项目

name: Contoso Chat Retail with Azure AI Studio and Promptflow description: A retail copilot that answers customer queries with responses grounded in retailer's product and customer data. languages:

  • python
  • bicep
  • azdeveloper
  • prompty products:
  • azure-openai
  • azure-cognitive-search
  • azure
  • azure-cosmos-db page_type: sample urlFragment: contoso-chat

Contoso Chat Retail with Azure AI Studio and Promptflow

This sample creates a customer support chat agent for an online retailer called Contoso Outdoors. The solution uses a retrieval-augmented generation pattern to ground responses in the company's product and customer data. Customers can ask questions about the retailer's product catalog, and also get recommendations based on their prior purchases.

Open in GitHub Codespaces Open in Dev Containers


About This Sample

In this sample we build, evaluate and deploy a customer support chat AI for Contoso Outdoors, a fictitious retailer who sells hiking and camping equipment. The implementation uses a Retrieval Augmented Generation (RAG) architecture to implement a retail copilot solution that responds to customer queries with answers grounded in the company's product catalog and customer purchase history.

The sample uses Azure AI Search to create and manage search indexes for product catalog data, Azure Cosmos DB to store and manage customer purchase history data, and Azure OpenAI to deploy and manage the core models required for our RAG-based architecture.

By exploring and deploying this sample, you will learn to:

Table of Contents

  1. Features
  2. Getting Started
  3. Azure Deployment
  4. Local Development
  5. Guidance
  6. Troubleshooting
  7. Resources
  8. Contributing
  9. Trademarks

Features

The project comes with:

  • Sample model configurations, chat and evaluation prompts for a RAG-based copilot app.
  • Prompty assets to simplify prompt creation & iteration for this copilot scenario.
  • Sample product and customer data for the retail copilot scenario.
  • Sample application code for copilot chat and evaluation workflows.
  • Sample azd-template configuration for managing the application on Azure.
  • Managed Identity configuration as a best practice for managing sensitive credentials.

This is also a signature sample for demonstrating new capabilities in the Azure AI platform. Expect regular updates to showcase cutting-edge features and best practices for generative AI development.

Architecture Diagram

The Contoso Chat application implements a retrieval augmented generation pattern to ground the model responses in your data. The architecture diagram below illustrates the key components and services used for implementation and highlights the use of Azure Managed Identity to reduce developer complexity in managing sensitive credentials.

Architecture Diagram

Demo Video

🌟 | Watch for a video update showing how easy it is to go from code to cloud using this template and the Azure Developer CLI for deploying your copilot application.

Versions

This has been the signature sample used to showcase end-to-end development of a copilot application code-first on the Azure AI platform. It has been actively used for training developer audiences and industry partners at key events including Microsoft AI Tour and Microsoft Build. Use the links below to reference specific versions of the sample corresponding to a related workshop or event session.

VersionDescription
v0 : #cc2e808Microsoft AI Tour 2023-24 (dag-flow, jnja template) - Skillable Lab
v1 : msbuild-lab322Microsoft Build 2024 (dag-flow, jnja template) - Skillable Lab
v2 : mainLatest version (flex-flow, prompty asset)- Azure AI Template

Getting Started

Pre-Requisites

You will also need:

Setup Environment

You have three options for getting started with this template:

  • GitHub Codespaces - Cloud-hosted dev container (pre-built environment)
  • VS Code Dev Containers - Locally-hosted dev container (pre-built environment)
  • Manual Setup - Local environment setup (for advanced users)

We recommend using GitHub Codespaces for the fastest start with least effort. However, we have provided instructions for all three options below.

1. GitHub Codespaces

  1. Click the button to launch this repository in GitHub Codespaces.

    Open in GitHub Codespaces

  2. This opens a new browser tab with setup taking a few minutes to complete. Once ready, you should see a Visual Studio Code editor in your browser tab, with a terminal open.

  3. Sign into your Azure account from the VS Code terminal

    azd auth login --use-device-code

2. VS Code Dev Containers

This is a related option that opens the project in your local VS Code using the Dev Containers extension instead. This is a useful alternative if your GitHub Codespaces quota is low, or you need to work offline.

  1. Start Docker Desktop (install it if not already installed)

  2. Open the project by clickjing the button below:

    Open in Dev Containers

  3. Once ready, the tab will refresh to show a Visual Studio Code editor with a terminal open.

  4. Sign into your Azure account from the VS Code terminal

    azd auth login

3. Manual Setup (Local)

  • Verify you have Python3 installed on your machine.

  • Install dependencies with pip install -r requirements.txt

  • Install Azure Developer CLI

    • Windows: winget install microsoft.azd
    • Linux: curl -fsSL https://aka.ms/install-azd.sh | bash
    • MacOS: brew tap azure/azd && brew install azd
  • Sign into your Azure account from the VS Code terminal

    azd auth login

Azure Deployment

  1. Use the same terminal where you previously authenticated with Azure.

  2. Provision and deploy your application to Azure. You will need to specify a valid subscription, deployment location, and environment name.

    azd up
  3. This step will take some time to complete.

    • Visit the Azure Portal to monitor progress.
    • Look for a new resource group matching the environment name
    • Click Deployments to track the status of the provisioning process
  4. Once provisioning completes, monitor progress for app deployment.

    • Visit the Azure AI Studio
    • Look for an AI Project associated with the above resource group
    • Click Deployments to track the status of the application deployment
  5. Once deployment completes, test the deployed endpoint from Azure AI Studio

    • Click the newly-created chat-deployment-xx endpoint listed
    • In the details page, click the Test tab for a built-in testing sandbox
    • In the Input box, enter a new query in this format and submit it:
      {"question": "Tell me about hiking shoes", "customerId": "2", "chat_history": []}
      
    • If successful, the response will be printed in the area below this prompt.

You can find your deployed retail copilot's Endpoint and Primary Key information on the deployment details page in the last step. Use them to configure your preferred front-end application (e.g., web app) to support a customer support chat UI capability that interacts with the deployed copilot in real time.

Local Development

Exploring the Prompty Asset

This sample contains an example chat.prompty asset that you can explore, to understand this new capability. The file has the following components:

  1. A frontmatter section that defines the following attributes:
    • name of the application
    • description of the application functionality
    • authors of the application (one per line)
    • model description (with these parameters)
      • api type of endpoint (can be chat or completion)
      • configuration parameters including
        • type of connection (azure_openai or openai)
        • environment variables (e.g., azure_deployment for chat model)
      • parameters (max_tokens, temperature, response_format)
    • inputs - each with type and optional default value
    • outputs - specifying a type (e.g., string)
    • sample - an example of the inputs (e.g., for testing)
  2. A system context (defining the agent persona and behavior)
    • #Safety section enforcing responsible AI requirements
    • #Documentation section with template for filling product documentation
    • #Previous Orders section with template for filling relevant history
    • #Customer Context section with template for filling customer details
    • question section to embed user query
    • Instructions section to reference related product recommendations

This specific prompty takes 3 inputs: a customer object, a documentation object (that could be chat history) and a question string that represents the user query. You can now load, execute, and trace individual prompty assets for a more granular prompt engineering solution.

Testing the Application Flow

This sample uses a flex-flow feature that lets you "create LLM apps using a Python class or function as the entry point" - making it easier to test and run them using a code-first experience.

  • This sample implements a Function based flow
  • The entry point is the get_response functionin chat_request.py

You can now test the flow in different ways:

  • Run it directly, like any Python script
  • Convert it to a flow, then use pf flow test --flow ...
  • Start a UI to chat with the flow using pf flow test --flow ... --ui

🌟 | Watch this space for more testing guidance.

Guidance

Region Availability

This template uses gpt-35-turbo for chat completion, gpt-4 for chat evaluation and text-embedding-ada-002 for vectorization. These models may not be available in all Azure regions. Check for up-to-date region availability and select a region accordingly.

This template uses the Semantic Ranker feature of Azure AI Search which may be available only in certain regions. Check for up-to-date region availability and select a region accordingly.

  • We recommend using sweden-central for the OpenAI Models
  • We recommend using eastus for the Azure AI Search Resource

[!NOTE] The default azd deploy takes a single location for deploying all resources within the resource group for that application. We set the default Azure AI Search location to eastus (in infra/ configuration), allowing you to now use the default location setting to optimize for model availability and capacity in region.

Costs

Pricing for services may vary by region and usage and exact costs cannot be estimated. You can estimate the cost of this project's architecture with Azure's pricing calculator with these services:

  • Azure OpenAI - Standard tier, GPT-4, GPT-35-turbo and Ada models. See Pricing
  • Azure AI Search - Basic tier, Semantic Ranker enabled See Pricing
  • Azure Cosmos DB for NoSQL - Serverless, Free Tier See Pricing

Security

This template uses Managed Identity for authentication with key Azure services including Azure OpenAI, Azure AI Search, and Azure Cosmos DB. Applications can use managed identities to obtain Microsoft Entra tokens without having to manage any credentials. This also removes the need for developers to manage these credentials themselves and reduces their complexity.

Additionally, we have added a GitHub Action tool that scans the infrastructure-as-code files and generates a report containing any detected issues. To ensure best practices we recommend anyone creating solutions based on our templates ensure that the Github secret scanning setting is enabled in your repo.

Resources

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多