
auto_timeseries是一个复杂的时间序列数据模型构建工具。由于它自动化了许多复杂任务,因此它假设了许多智能默认值。但你可以更改它们。
Auto_Timeseries将快速构建基于Statsmodels ARIMA、季节性ARIMA、Prophet和Scikit-Learn机器学习的预测模型。它将自动选择给出最佳指定分数的最佳模型。
如果你正在寻找我们库的最新和最重要的更新,请查看我们的更新页面。 <br>
如果你在研究项目或论文中使用Auto_TS,请使用以下格式进行引用:
"Seshadri, Ram (2020). GitHub - AutoViML/Auto_TS: 使用机器学习和统计技术通过单行代码构建和部署多个时间序列模型。源代码:https://github.com/AutoViML/Auto_TS"
<h2 id="introduction">简介</h2>Auto_TS(Auto_TimeSeries)使你能够使用ARIMA、SARIMAX、VAR、可分解(趋势+季节性+节假日)模型和集成机器学习模型等技术构建和选择多个时间序列模型。
Auto_TimeSeries是一个用于时间序列数据的自动化机器学习库。Auto_TimeSeries最初由Ram Seshadri构思和开发,后来由Nikhil Gupta在功能和范围上进行了大幅扩展和升级,达到了现在的状态。
auto-ts.Auto_TimeSeries是你将使用训练数据调用的主要函数。你可以选择想要的模型类型:统计、机器学习或基于Prophet的模型。你还可以告诉它根据你想要的评分参数自动选择最佳模型。它将返回最佳模型和包含你指定的预测期数(默认为2)的预测字典。
pip install auto-ts
如果上面的方法不起作用,请使用pip3 install auto-ts
pip install git+https://github.com/AutoViML/Auto_TS.git
如果你正在使用Colab或Kaggle内核并想安装auto_ts,请使用以下步骤(否则你会收到错误!):
!pip install auto-ts --no-deps --ignore-installed
!pip install 'fsspec>=0.3.3'
!pip install statsmodels --upgrade
!pip install pmdarima

Windows用户在安装Prophet和pystan依赖项时可能会遇到困难。因此,我们建议在安装auto-ts之前按照Prophet文档页面的说明安装Prophet。对于Anaconda用户,可以通过以下方式完成:
<h2 id="usage">使用方法</h2>conda install -c conda-forge prophet pip install auto-ts
from auto_ts import auto_timeseries
model = auto_timeseries( score_type='rmse', time_interval='Month', non_seasonal_pdq=None, seasonality=False, seasonal_period=12, model_type=['Prophet'], verbose=2, )
['B','C','D','W','M','SM','BM','CBM', 'MS','SMS','BMS','CBMS','Q','BQ','QS','BQS', 'A,Y','BA,BY','AS,YS','BAS,BYS','BH', 'H','T,min','S','L,ms','U,us','N']
首先,您可以为您的数据测试以下代码并查看结果(或者您可以将其保留为None,auto_timeseries将尝试为您推断):
'MS', 'M', 'SM', 'BM', 'CBM', 'SMS', 'BMS' 用于月度频率数据'D', 'B', 'C' 用于日频率数据'W' 用于周频率数据'Q', 'BQ', 'QS', 'BQS' 用于季度频率数据'A,Y', 'BA,BY', 'AS,YS', 'BAS,YAS' 用于年度频率数据'BH', 'H', 'h' 用于小时频率数据'T,min' 用于分钟频率数据'S', 'L,milliseconds', 'U,microseconds', 'N,nanoseconds' 用于秒频率数据max_p = 3, max_d = 1, max_q = 3。类型为元组。'best', 'prophet', 'stats', 'ARIMA', 'SARIMAX', 'VAR', 'ML'。"prophet" 将使用 Prophet 构建模型 -> 这意味着你必须安装 Prophet"stats" 将构建基于 statsmodels 的 ARIMA、SARIMAX 和 VAR 模型"ML" 将使用随机森林构建机器学习模型,前提是提供了解释变量"best" 将尝试构建所有模型并选择最佳模型警告:"best" 对于大型数据集可能需要一些时间。我们建议在尝试运行整个数据之前,先从数据集中选择一个小样本。
model.fit( traindata=train_data, ts_column=ts_column, target=target, cv=5, sep="," )
以下是参数的定义方式:
predictions = model.predict( testdata = ..., # 可以是数据框或代表预测期的整数 model = 'best' # 或任何其他代表已训练模型的字符串 )
以下是参数的定义方式。你可以选择以数据框的形式发送测试数据,或发送一个整数来决定你想预测多少期。你只需要
seasonal_PDQ = (2,1,2)和non_seasonal_pdq = (0,0,3)。它只接受元组格式。默认值为None,Auto_Timeseries将自动搜索最佳的p,d,q(非季节性)和P,D,Q(季节性)阶数,方法是对每个p,d,q值搜索0到12的所有参数,对每个P,Q搜索0到3,对D搜索0到1。这不是Google官方支持的项目。
<h2 id="copyright">版权</h2>

多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、 安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。
最新AI 工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号