C++20/17/14/11新特性概览
项目提供C++20/17/14/11新特性概览,涵盖各版本引入的语言和库功 能。包括C++20的协程、概念、指定初始化器,C++17的变体、可选值、文件系统,以及C++14和C++11的主要更新。为开发者提供现代C++新特性的参考资源,便于快速了解语言演进。
C++20 includes the following new language features:
C++20 includes the following new library features:
C++17 includes the following new language features:
C++17 includes the following new library features:
C++14 includes the following new language features:
C++14 includes the following new library features:
C++11 includes the following new language features:
C++11 includes the following new library features:
Coroutines are special functions that can have their execution suspended and resumed. To define a coroutine, the co_return
, co_await
, or co_yield
keywords must be present in the function's body. C++20's coroutines are stackless; unless optimized out by the compiler, their state is allocated on the heap.
An example of a coroutine is a generator function, which yields (i.e. generates) a value at each invocation:
generator<int> range(int start, int end) { while (start < end) { co_yield start; start++; } // Implicit co_return at the end of this function: // co_return; } for (int n : range(0, 10)) { std::cout << n << std::endl; }
The above range
generator function generates values starting at start
until end
(exclusive), with each iteration step yielding the current value stored in start
. The generator maintains its state across each invocation of range
(in this case, the invocation is for each iteration in the for loop). co_yield
takes the given expression, yields (i.e. returns) its value, and suspends the coroutine at that point. Upon resuming, execution continues after the co_yield
.
Another example of a coroutine is a task, which is an asynchronous computation that is executed when the task is awaited:
task<void> echo(socket s) { for (;;) { auto data = co_await s.async_read(); co_await async_write(s, data); } // Implicit co_return at the end of this function: // co_return; }
In this example, the co_await
keyword is introduced. This keyword takes an expression and suspends execution if the thing you're awaiting on (in this case, the read or write) is not ready, otherwise you continue execution. (Note that under the hood, co_yield
uses co_await
.)
Using a task to lazily evaluate a value:
task<int> calculate_meaning_of_life() { co_return 42; } auto meaning_of_life = calculate_meaning_of_life(); // ... co_await meaning_of_life; // == 42
Note: While these examples illustrate how to use coroutines at a basic level, there is lots more going on when the code is compiled. These examples are not meant to be complete coverage of C++20's coroutines. Since the generator
and task
classes are not provided by the standard library yet, I used the cppcoro library to compile these examples.
Concepts are named compile-time predicates which constrain types. They take the following form:
template < template-parameter-list >
concept concept-name = constraint-expression;
where constraint-expression
evaluates to a constexpr Boolean. Constraints should model semantic requirements, such as whether a type is a numeric or hashable. A compiler error results if a given type does not satisfy the concept it's bound by (i.e. constraint-expression
returns false
). Because constraints are evaluated at compile-time, they can provide more meaningful error messages and runtime safety.
// `T` is not limited by any constraints. template <typename T> concept always_satisfied = true; // Limit `T` to integrals. template <typename T> concept integral = std::is_integral_v<T>; // Limit `T` to both the `integral` constraint and signedness. template <typename T> concept signed_integral = integral<T> && std::is_signed_v<T>; // Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint. template <typename T> concept unsigned_integral = integral<T> && !signed_integral<T>;
There are a variety of syntactic forms for enforcing concepts:
// Forms for function parameters: // `T` is a constrained type template parameter. template <my_concept T> void f(T v); // `T` is a constrained type template parameter. template <typename T> requires my_concept<T> void f(T v); // `T` is a constrained type template parameter. template <typename T> void f(T v) requires my_concept<T>; // `v` is a constrained deduced parameter. void f(my_concept auto v); // `v` is a constrained non-type template parameter. template <my_concept auto v> void g(); // Forms for auto-deduced variables: // `foo` is a constrained auto-deduced value. my_concept auto foo = ...; // Forms for lambdas: // `T` is a constrained type template parameter. auto f = []<my_concept T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> requires my_concept<T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> (T v) requires my_concept<T> { // ... }; // `v` is a constrained deduced parameter. auto f = [](my_concept auto v) { // ... }; // `v` is a constrained non-type template parameter. auto g = []<my_concept auto v> () { // ... };
The requires
keyword is used either to start a requires
clause or a requires
expression:
template <typename T> requires my_concept<T> // `requires` clause. void f(T); template <typename T> concept callable = requires (T f) { f(); }; // `requires` expression. template <typename T> requires requires (T x) { x + x; } // `requires` clause and expression on same line. T add(T a, T b) { return a + b; }
Note that the parameter list in a requires
expression is optional. Each requirement in a requires
expression are one of the following:
template <typename T> concept callable = requires (T f) { f(); };
typename
keyword followed by a type name, asserts that the given type name is valid.struct foo { int foo; }; struct bar { using value = int; value data; }; struct baz { using value = int; value data; }; // Using SFINAE, enable if `T` is a `baz`. template <typename T, typename = std::enable_if_t<std::is_same_v<T, baz>>> struct S {}; template <typename T> using Ref = T&; template <typename T> concept C = requires { // Requirements on type `T`: typename T::value; // A) has an inner member named `value` typename S<T>; // B) must have a valid class template specialization for `S` typename Ref<T>; // C) must be a valid alias template substitution }; template <C T> void g(T a); g(foo{}); // ERROR: Fails requirement A. g(bar{}); // ERROR: Fails requirement B. g(baz{}); // PASS.
template <typename T> concept C = requires(T x) { {*x} -> std::convertible_to<typename T::inner>; // the type of the expression `*x` is convertible to `T::inner` {x + 1} -> std::same_as<int>; // the expression `x + 1` satisfies `std::same_as<decltype((x + 1))>` {x * 1} -> std::convertible_to<T>; // the type of the expression `x * 1` is convertible to `T` };
requires
keyword, specify additional constraints (such as those on local parameter arguments).template <typename T> concept C = requires(T x) { requires std::same_as<sizeof(x), size_t>; };
See also: concepts library.
C-style designated initializer syntax. Any member fields that are not explicitly listed in the designated initializer list are default-initialized.
struct A { int x; int y; int z = 123; }; A a {.x = 1, .z = 2}; // a.x == 1, a.y == 0, a.z == 2
Use familiar template syntax in lambda expressions.
auto f = []<typename T>(std::vector<T> v) { // ... };
This feature simplifies common code patterns, helps keep scopes tight, and offers an elegant solution to a common lifetime problem.
for (auto v = std::vector{1, 2, 3}; auto& e : v) { std::cout << e; } // prints "123"
Provides a hint to the optimizer that the labelled statement has a high probability of being executed.
switch (n) { case 1: // ... break; [[likely]] case 2: // n == 2 is considered to be arbitrarily more // ... // likely than any other value of n break; }
If one of the likely/unlikely attributes appears after the right parenthesis of an if-statement, it indicates that the branch is likely/unlikely to have its substatement (body) executed.
int random = get_random_number_between_x_and_y(0, 3); if (random > 0) [[likely]] { // body of if statement // ... }
It can also be applied to the substatement (body) of an iteration statement.
while (unlikely_truthy_condition) [[unlikely]] { // body of while statement // ... }
Implicitly capturing this
in a lambda capture using [=]
is now deprecated; prefer capturing explicitly using [=, this]
or [=, *this]
.
struct int_value { int n = 0; auto getter_fn() { // BAD: // return [=]() { return n; }; // GOOD: return [=, *this]() { return n; }; } };
Classes can now be used in non-type template parameters. Objects passed in as template arguments have the type const T
, where T
is the type of the object, and has static storage duration.
struct foo { foo() = default; constexpr foo(int) {} }; template <foo f> auto get_foo()
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量 的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手 ,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时 语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号