modern-cpp-features

modern-cpp-features

C++20/17/14/11新特性概览

项目提供C++20/17/14/11新特性概览,涵盖各版本引入的语言和库功能。包括C++20的协程、概念、指定初始化器,C++17的变体、可选值、文件系统,以及C++14和C++11的主要更新。为开发者提供现代C++新特性的参考资源,便于快速了解语言演进。

C++20C++17C++14C++11语言特性Github开源项目

C++20/17/14/11

Overview

C++20 includes the following new language features:

C++20 includes the following new library features:

C++17 includes the following new language features:

C++17 includes the following new library features:

C++14 includes the following new language features:

C++14 includes the following new library features:

C++11 includes the following new language features:

C++11 includes the following new library features:

C++20 Language Features

Coroutines

Coroutines are special functions that can have their execution suspended and resumed. To define a coroutine, the co_return, co_await, or co_yield keywords must be present in the function's body. C++20's coroutines are stackless; unless optimized out by the compiler, their state is allocated on the heap.

An example of a coroutine is a generator function, which yields (i.e. generates) a value at each invocation:

generator<int> range(int start, int end) { while (start < end) { co_yield start; start++; } // Implicit co_return at the end of this function: // co_return; } for (int n : range(0, 10)) { std::cout << n << std::endl; }

The above range generator function generates values starting at start until end (exclusive), with each iteration step yielding the current value stored in start. The generator maintains its state across each invocation of range (in this case, the invocation is for each iteration in the for loop). co_yield takes the given expression, yields (i.e. returns) its value, and suspends the coroutine at that point. Upon resuming, execution continues after the co_yield.

Another example of a coroutine is a task, which is an asynchronous computation that is executed when the task is awaited:

task<void> echo(socket s) { for (;;) { auto data = co_await s.async_read(); co_await async_write(s, data); } // Implicit co_return at the end of this function: // co_return; }

In this example, the co_await keyword is introduced. This keyword takes an expression and suspends execution if the thing you're awaiting on (in this case, the read or write) is not ready, otherwise you continue execution. (Note that under the hood, co_yield uses co_await.)

Using a task to lazily evaluate a value:

task<int> calculate_meaning_of_life() { co_return 42; } auto meaning_of_life = calculate_meaning_of_life(); // ... co_await meaning_of_life; // == 42

Note: While these examples illustrate how to use coroutines at a basic level, there is lots more going on when the code is compiled. These examples are not meant to be complete coverage of C++20's coroutines. Since the generator and task classes are not provided by the standard library yet, I used the cppcoro library to compile these examples.

Concepts

Concepts are named compile-time predicates which constrain types. They take the following form:

template < template-parameter-list >
concept concept-name = constraint-expression;

where constraint-expression evaluates to a constexpr Boolean. Constraints should model semantic requirements, such as whether a type is a numeric or hashable. A compiler error results if a given type does not satisfy the concept it's bound by (i.e. constraint-expression returns false). Because constraints are evaluated at compile-time, they can provide more meaningful error messages and runtime safety.

// `T` is not limited by any constraints. template <typename T> concept always_satisfied = true; // Limit `T` to integrals. template <typename T> concept integral = std::is_integral_v<T>; // Limit `T` to both the `integral` constraint and signedness. template <typename T> concept signed_integral = integral<T> && std::is_signed_v<T>; // Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint. template <typename T> concept unsigned_integral = integral<T> && !signed_integral<T>;

There are a variety of syntactic forms for enforcing concepts:

// Forms for function parameters: // `T` is a constrained type template parameter. template <my_concept T> void f(T v); // `T` is a constrained type template parameter. template <typename T> requires my_concept<T> void f(T v); // `T` is a constrained type template parameter. template <typename T> void f(T v) requires my_concept<T>; // `v` is a constrained deduced parameter. void f(my_concept auto v); // `v` is a constrained non-type template parameter. template <my_concept auto v> void g(); // Forms for auto-deduced variables: // `foo` is a constrained auto-deduced value. my_concept auto foo = ...; // Forms for lambdas: // `T` is a constrained type template parameter. auto f = []<my_concept T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> requires my_concept<T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> (T v) requires my_concept<T> { // ... }; // `v` is a constrained deduced parameter. auto f = [](my_concept auto v) { // ... }; // `v` is a constrained non-type template parameter. auto g = []<my_concept auto v> () { // ... };

The requires keyword is used either to start a requires clause or a requires expression:

template <typename T> requires my_concept<T> // `requires` clause. void f(T); template <typename T> concept callable = requires (T f) { f(); }; // `requires` expression. template <typename T> requires requires (T x) { x + x; } // `requires` clause and expression on same line. T add(T a, T b) { return a + b; }

Note that the parameter list in a requires expression is optional. Each requirement in a requires expression are one of the following:

  • Simple requirements - asserts that the given expression is valid.
template <typename T> concept callable = requires (T f) { f(); };
  • Type requirements - denoted by the typename keyword followed by a type name, asserts that the given type name is valid.
struct foo { int foo; }; struct bar { using value = int; value data; }; struct baz { using value = int; value data; }; // Using SFINAE, enable if `T` is a `baz`. template <typename T, typename = std::enable_if_t<std::is_same_v<T, baz>>> struct S {}; template <typename T> using Ref = T&; template <typename T> concept C = requires { // Requirements on type `T`: typename T::value; // A) has an inner member named `value` typename S<T>; // B) must have a valid class template specialization for `S` typename Ref<T>; // C) must be a valid alias template substitution }; template <C T> void g(T a); g(foo{}); // ERROR: Fails requirement A. g(bar{}); // ERROR: Fails requirement B. g(baz{}); // PASS.
  • Compound requirements - an expression in braces followed by a trailing return type or type constraint.
template <typename T> concept C = requires(T x) { {*x} -> std::convertible_to<typename T::inner>; // the type of the expression `*x` is convertible to `T::inner` {x + 1} -> std::same_as<int>; // the expression `x + 1` satisfies `std::same_as<decltype((x + 1))>` {x * 1} -> std::convertible_to<T>; // the type of the expression `x * 1` is convertible to `T` };
  • Nested requirements - denoted by the requires keyword, specify additional constraints (such as those on local parameter arguments).
template <typename T> concept C = requires(T x) { requires std::same_as<sizeof(x), size_t>; };

See also: concepts library.

Designated initializers

C-style designated initializer syntax. Any member fields that are not explicitly listed in the designated initializer list are default-initialized.

struct A { int x; int y; int z = 123; }; A a {.x = 1, .z = 2}; // a.x == 1, a.y == 0, a.z == 2

Template syntax for lambdas

Use familiar template syntax in lambda expressions.

auto f = []<typename T>(std::vector<T> v) { // ... };

Range-based for loop with initializer

This feature simplifies common code patterns, helps keep scopes tight, and offers an elegant solution to a common lifetime problem.

for (auto v = std::vector{1, 2, 3}; auto& e : v) { std::cout << e; } // prints "123"

[[likely]] and [[unlikely]] attributes

Provides a hint to the optimizer that the labelled statement has a high probability of being executed.

switch (n) { case 1: // ... break; [[likely]] case 2: // n == 2 is considered to be arbitrarily more // ... // likely than any other value of n break; }

If one of the likely/unlikely attributes appears after the right parenthesis of an if-statement, it indicates that the branch is likely/unlikely to have its substatement (body) executed.

int random = get_random_number_between_x_and_y(0, 3); if (random > 0) [[likely]] { // body of if statement // ... }

It can also be applied to the substatement (body) of an iteration statement.

while (unlikely_truthy_condition) [[unlikely]] { // body of while statement // ... }

Deprecate implicit capture of this

Implicitly capturing this in a lambda capture using [=] is now deprecated; prefer capturing explicitly using [=, this] or [=, *this].

struct int_value { int n = 0; auto getter_fn() { // BAD: // return [=]() { return n; }; // GOOD: return [=, *this]() { return n; }; } };

Class types in non-type template parameters

Classes can now be used in non-type template parameters. Objects passed in as template arguments have the type const T, where T is the type of the object, and has static storage duration.

struct foo { foo() = default; constexpr foo(int) {} }; template <foo f> auto get_foo()

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多