
C++20/17/14/11新特性概览
项目提供C++20/17/14/11新特性概览,涵盖各版本引入的语言和库功 能。包括C++20的协程、概念、指定初始化器,C++17的变体、可选值、文件系统,以及C++14和C++11的主要更新。为开发者提供现代C++新特性的参考资源,便于快速了解语言演进。
C++20 includes the following new language features:
C++20 includes the following new library features:
C++17 includes the following new language features:
C++17 includes the following new library features:
C++14 includes the following new language features:
C++14 includes the following new library features:
C++11 includes the following new language features:
C++11 includes the following new library features:
Coroutines are special functions that can have their execution suspended and resumed. To define a coroutine, the co_return, co_await, or co_yield keywords must be present in the function's body. C++20's coroutines are stackless; unless optimized out by the compiler, their state is allocated on the heap.
An example of a coroutine is a generator function, which yields (i.e. generates) a value at each invocation:
generator<int> range(int start, int end) { while (start < end) { co_yield start; start++; } // Implicit co_return at the end of this function: // co_return; } for (int n : range(0, 10)) { std::cout << n << std::endl; }
The above range generator function generates values starting at start until end (exclusive), with each iteration step yielding the current value stored in start. The generator maintains its state across each invocation of range (in this case, the invocation is for each iteration in the for loop). co_yield takes the given expression, yields (i.e. returns) its value, and suspends the coroutine at that point. Upon resuming, execution continues after the co_yield.
Another example of a coroutine is a task, which is an asynchronous computation that is executed when the task is awaited:
task<void> echo(socket s) { for (;;) { auto data = co_await s.async_read(); co_await async_write(s, data); } // Implicit co_return at the end of this function: // co_return; }
In this example, the co_await keyword is introduced. This keyword takes an expression and suspends execution if the thing you're awaiting on (in this case, the read or write) is not ready, otherwise you continue execution. (Note that under the hood, co_yield uses co_await.)
Using a task to lazily evaluate a value:
task<int> calculate_meaning_of_life() { co_return 42; } auto meaning_of_life = calculate_meaning_of_life(); // ... co_await meaning_of_life; // == 42
Note: While these examples illustrate how to use coroutines at a basic level, there is lots more going on when the code is compiled. These examples are not meant to be complete coverage of C++20's coroutines. Since the generator and task classes are not provided by the standard library yet, I used the cppcoro library to compile these examples.
Concepts are named compile-time predicates which constrain types. They take the following form:
template < template-parameter-list >
concept concept-name = constraint-expression;
where constraint-expression evaluates to a constexpr Boolean. Constraints should model semantic requirements, such as whether a type is a numeric or hashable. A compiler error results if a given type does not satisfy the concept it's bound by (i.e. constraint-expression returns false). Because constraints are evaluated at compile-time, they can provide more meaningful error messages and runtime safety.
// `T` is not limited by any constraints. template <typename T> concept always_satisfied = true; // Limit `T` to integrals. template <typename T> concept integral = std::is_integral_v<T>; // Limit `T` to both the `integral` constraint and signedness. template <typename T> concept signed_integral = integral<T> && std::is_signed_v<T>; // Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint. template <typename T> concept unsigned_integral = integral<T> && !signed_integral<T>;
There are a variety of syntactic forms for enforcing concepts:
// Forms for function parameters: // `T` is a constrained type template parameter. template <my_concept T> void f(T v); // `T` is a constrained type template parameter. template <typename T> requires my_concept<T> void f(T v); // `T` is a constrained type template parameter. template <typename T> void f(T v) requires my_concept<T>; // `v` is a constrained deduced parameter. void f(my_concept auto v); // `v` is a constrained non-type template parameter. template <my_concept auto v> void g(); // Forms for auto-deduced variables: // `foo` is a constrained auto-deduced value. my_concept auto foo = ...; // Forms for lambdas: // `T` is a constrained type template parameter. auto f = []<my_concept T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> requires my_concept<T> (T v) { // ... }; // `T` is a constrained type template parameter. auto f = []<typename T> (T v) requires my_concept<T> { // ... }; // `v` is a constrained deduced parameter. auto f = [](my_concept auto v) { // ... }; // `v` is a constrained non-type template parameter. auto g = []<my_concept auto v> () { // ... };
The requires keyword is used either to start a requires clause or a requires expression:
template <typename T> requires my_concept<T> // `requires` clause. void f(T); template <typename T> concept callable = requires (T f) { f(); }; // `requires` expression. template <typename T> requires requires (T x) { x + x; } // `requires` clause and expression on same line. T add(T a, T b) { return a + b; }
Note that the parameter list in a requires expression is optional. Each requirement in a requires expression are one of the following:
template <typename T> concept callable = requires (T f) { f(); };
typename keyword followed by a type name, asserts that the given type name is valid.struct foo { int foo; }; struct bar { using value = int; value data; }; struct baz { using value = int; value data; }; // Using SFINAE, enable if `T` is a `baz`. template <typename T, typename = std::enable_if_t<std::is_same_v<T, baz>>> struct S {}; template <typename T> using Ref = T&; template <typename T> concept C = requires { // Requirements on type `T`: typename T::value; // A) has an inner member named `value` typename S<T>; // B) must have a valid class template specialization for `S` typename Ref<T>; // C) must be a valid alias template substitution }; template <C T> void g(T a); g(foo{}); // ERROR: Fails requirement A. g(bar{}); // ERROR: Fails requirement B. g(baz{}); // PASS.
template <typename T> concept C = requires(T x) { {*x} -> std::convertible_to<typename T::inner>; // the type of the expression `*x` is convertible to `T::inner` {x + 1} -> std::same_as<int>; // the expression `x + 1` satisfies `std::same_as<decltype((x + 1))>` {x * 1} -> std::convertible_to<T>; // the type of the expression `x * 1` is convertible to `T` };
requires keyword, specify additional constraints (such as those on local parameter arguments).template <typename T> concept C = requires(T x) { requires std::same_as<sizeof(x), size_t>; };
See also: concepts library.
C-style designated initializer syntax. Any member fields that are not explicitly listed in the designated initializer list are default-initialized.
struct A { int x; int y; int z = 123; }; A a {.x = 1, .z = 2}; // a.x == 1, a.y == 0, a.z == 2
Use familiar template syntax in lambda expressions.
auto f = []<typename T>(std::vector<T> v) { // ... };
This feature simplifies common code patterns, helps keep scopes tight, and offers an elegant solution to a common lifetime problem.
for (auto v = std::vector{1, 2, 3}; auto& e : v) { std::cout << e; } // prints "123"
Provides a hint to the optimizer that the labelled statement has a high probability of being executed.
switch (n) { case 1: // ... break; [[likely]] case 2: // n == 2 is considered to be arbitrarily more // ... // likely than any other value of n break; }
If one of the likely/unlikely attributes appears after the right parenthesis of an if-statement, it indicates that the branch is likely/unlikely to have its substatement (body) executed.
int random = get_random_number_between_x_and_y(0, 3); if (random > 0) [[likely]] { // body of if statement // ... }
It can also be applied to the substatement (body) of an iteration statement.
while (unlikely_truthy_condition) [[unlikely]] { // body of while statement // ... }
Implicitly capturing this in a lambda capture using [=] is now deprecated; prefer capturing explicitly using [=, this] or [=, *this].
struct int_value { int n = 0; auto getter_fn() { // BAD: // return [=]() { return n; }; // GOOD: return [=, *this]() { return n; }; } };
Classes can now be used in non-type template parameters. Objects passed in as template arguments have the type const T, where T is the type of the object, and has static storage duration.
struct foo { foo() = default; constexpr foo(int) {} }; template <foo f> auto get_foo()


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属 的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国 会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应 满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意 创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号