This is the 250 days Challenge of Machine Learning, Deep Learning, AI, and Optimization (mini-projects and research papers) that I picked up at the start of January 2022. I have used various environments and Google Colab, and certain environments for this work as it required various libraries and datasets to be downloaded. The following are the problems that I tackled:
Classification for Cat (GradCAM-based Explainability) | Classification for Dog (GradCAM-based Explainability) |
---|---|
![]() | ![]() |
Computer Vision domains | CAM methods used | Detected Images | CAM-based images |
---|---|---|---|
Semantic Segmentation | GradCAM | ![]() | ![]() |
Object Detection | EigenCAM | ![]() | ![]() |
Object Detection | AblationCAM | ![]() | ![]() |
3D Point Clouds | Meshes Used | Sampled Meshes |
---|---|---|
Beds | ![]() | ![]() |
Chair | TBA | ![]() |
Dataset | Loss Curve | Accuracy Curve |
---|---|---|
YouChoose-Click | ![]() | ![]() |
YouChoose-Buy | ![]() | ![]() |
SN | Training and Validation Metrices |
---|---|
1 | ![]() |
2 | ![]() |
Loss Metrices |
---|
![]() |
Day 9 (01/09/2022): Latent 3D Point Cloud Generation using GANs and Auto Encoders
Day 10 (01/10/2022): Deep Learning introduced on Audio Signal
Day 11 (01/11/2022): Ant-Colony Optimization
Explore Difference between Ant Colony Optimization and Genetic Algorithms for Travelling Salesman Problem.
Methods Used | Geo-locaion graph |
---|---|
Ant Colony Optimization | ![]() |
Genetic Algorithm | ![]() |
Day 12 (01/12/2022): Particle Swarm Optimization
Day 13 (01/13/2022): Cuckoo Search Optimization
Day 14 (01/14/2022): Physics-based Optimization algorithms Explored the contents of Physics-based optimization techniques such as:
+ So many equations and loops - take time to run on larger dimension
+ General O (g * n * d)
+ Good convergence curse because the used of gaussian-distribution and levy-flight trajectory
+ Use the variant of Differential Evolution
+ Too much constants and variables
+ Still have some unclear point in Eq. 9 and Algorithm. 1
+ Can improve this algorithm by opposition-based and levy-flight
+ A wrong logic code in line 91 "j = id % self.n_elements" => to "j = id % self.n_clusters" can make algorithm converge faster. I don't know why?
+ Good results come from CEC 2014
Day 16 (01/16/2022): Evolutionary Optimization algorithms Explored the contents of Human Activity-based optimization techniques such as: Genetic Algorithms (Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73) Differential Evolution (Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359) Coral Reefs Optimization Algorithm (Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014)
Day 17 (01/17/2022): Swarm-based Optimization algorithms Explored the contents of Swarm-based optimization techniques such as:
Credits (from Day 14--17): Learnt a lot due to Nguyen Van Thieu and his repository that deals with metaheuristic algorithms. Plan to use these algorithms in the problems enountered later onwards.
Day 18 (01/18/2022): Grey Wolf Optimization Algorithm
Day 19 (01/19/2022): Firefly Optimization Algorithm
Day 20 (01/20/2022): Covariance Matrix Adaptation Evolution Strategy Referenced from CMA (can be installed using pip install cma
)
CMAES without bounds | CMAES with bounds |
---|---|
![]() | ![]() |
Refered from: Nikolaus Hansen, Dirk Arnold, Anne Auger. Evolution Strategies. Janusz Kacprzyk; Witold Pedrycz. Handbook of Computational Intelligence, Springer, 2015, 978-3-622-43504-5. ffhal-01155533f
S. No | Forged Images | Forgery Detection in Images |
---|---|---|
1 | ![]() | ![]() |
2 | ![]() | ![]() |
3 | ![]() | ![]() |
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮 助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦 语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队 能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!