This is the 250 days Challenge of Machine Learning, Deep Learning, AI, and Optimization (mini-projects and research papers) that I picked up at the start of January 2022. I have used various environments and Google Colab, and certain environments for this work as it required various libraries and datasets to be downloaded. The following are the problems that I tackled:
| Classification for Cat (GradCAM-based Explainability) | Classification for Dog (GradCAM-based Explainability) |
|---|---|
![]() | ![]() |
| Computer Vision domains | CAM methods used | Detected Images | CAM-based images |
|---|---|---|---|
| Semantic Segmentation | GradCAM | ![]() | ![]() |
| Object Detection | EigenCAM | ![]() | ![]() |
| Object Detection | AblationCAM | ![]() | ![]() |
| 3D Point Clouds | Meshes Used | Sampled Meshes |
|---|---|---|
| Beds | ![]() | ![]() |
| Chair | TBA | ![]() |
| Dataset | Loss Curve | Accuracy Curve |
|---|---|---|
| YouChoose-Click | ![]() | ![]() |
| YouChoose-Buy | ![]() | ![]() |
| SN | Training and Validation Metrices |
|---|---|
| 1 | ![]() |
| 2 | ![]() |
| Loss Metrices |
|---|
![]() |
Day 9 (01/09/2022): Latent 3D Point Cloud Generation using GANs and Auto Encoders
Day 10 (01/10/2022): Deep Learning introduced on Audio Signal
Day 11 (01/11/2022): Ant-Colony Optimization
Explore Difference between Ant Colony Optimization and Genetic Algorithms for Travelling Salesman Problem.
| Methods Used | Geo-locaion graph |
|---|---|
| Ant Colony Optimization | ![]() |
| Genetic Algorithm | ![]() |
Day 12 (01/12/2022): Particle Swarm Optimization
Day 13 (01/13/2022): Cuckoo Search Optimization
Day 14 (01/14/2022): Physics-based Optimization algorithms Explored the contents of Physics-based optimization techniques such as:
+ So many equations and loops - take time to run on larger dimension
+ General O (g * n * d)
+ Good convergence curse because the used of gaussian-distribution and levy-flight trajectory
+ Use the variant of Differential Evolution
+ Too much constants and variables
+ Still have some unclear point in Eq. 9 and Algorithm. 1
+ Can improve this algorithm by opposition-based and levy-flight
+ A wrong logic code in line 91 "j = id % self.n_elements" => to "j = id % self.n_clusters" can make algorithm converge faster. I don't know why?
+ Good results come from CEC 2014
Day 16 (01/16/2022): Evolutionary Optimization algorithms Explored the contents of Human Activity-based optimization techniques such as: Genetic Algorithms (Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73) Differential Evolution (Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359) Coral Reefs Optimization Algorithm (Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014)
Day 17 (01/17/2022): Swarm-based Optimization algorithms Explored the contents of Swarm-based optimization techniques such as:
Credits (from Day 14--17): Learnt a lot due to Nguyen Van Thieu and his repository that deals with metaheuristic algorithms. Plan to use these algorithms in the problems enountered later onwards.
Day 18 (01/18/2022): Grey Wolf Optimization Algorithm
Day 19 (01/19/2022): Firefly Optimization Algorithm
Day 20 (01/20/2022): Covariance Matrix Adaptation Evolution Strategy Referenced from CMA (can be installed using pip install cma)
| CMAES without bounds | CMAES with bounds |
|---|---|
![]() | ![]() |
Refered from: Nikolaus Hansen, Dirk Arnold, Anne Auger. Evolution Strategies. Janusz Kacprzyk; Witold Pedrycz. Handbook of Computational Intelligence, Springer, 2015, 978-3-622-43504-5. ffhal-01155533f
| S. No | Forged Images | Forgery Detection in Images |
|---|---|---|
| 1 | ![]() | ![]() |
| 2 | ![]() | ![]() |
| 3 | ![]() | ![]() |


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印 视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号