anchoring-ai

anchoring-ai

无代码AI应用构建协作开源平台

Anchoring AI是一个无代码AI应用构建平台,支持团队协作开发基于GPT等大型语言模型的应用。平台提供拖放式界面、模块化设计、批处理功能和提示管理,便于创建和分享AI应用。它集成Langchain,支持自定义认证,并通过缓存优化提升性能、降低成本。该开源项目旨在促进团队向AI驱动转型。

Anchoring AILLM应用开源工具无代码界面模块化设计Github开源项目

Anchoring AI

<a href="https://opensource.org/licenses/Apache-2.0"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License: Apache"></a> <a href="https://discord.gg/rZ6ne9HRq4"><img src="https://img.shields.io/badge/Discord-Join-blue?logo=discord&logoColor=white&color=blue" alt="Discord Follow"></a> <a href="https://docs.anchoring.ai/"><img src="https://img.shields.io/badge/document-English-blue.svg" alt="EN doc"></a>

Why Anchoring AI? | Live Demo and Videos | Docker Deployment | Installation Guide

Why Anchoring AI?

Anchoring AI is an open-source no-code tool for teams to collaborate on building, evaluating, and hosting applications leveraging GPT and other large language models. You could easily build and share LLM-powered apps, manage your budget and run batch jobs. With Anchoring AI, managing access, controlling budgets, and running batch jobs is a breeze. We aim to be the destination of choice for transforming your team into an AI-centric powerhouse.

We provide:

  • No-Code Interface: Quickly build apps with language models.
  • Modular Design: Easily add your own models, datasets and extensions.
  • Drag-and-Drop: Chain components to create powerful apps.
  • Batch Processing: Efficiently handle evaluations and repetitive tasks.
  • Prompt Management: Effortlessly manage your prompt and chains.
  • Easy Sharing: Streamline collaboration and sharing.
  • Secure Access: Customizable authentication for team management.
  • Langchain Integration: Seamless compatibility with Langchain (Python).
  • Optimized Caching: Reduce costs and boost performance.

Live Demo and Videos

Live Website

You can check out our Alpha Release here.

Videos

https://github.com/AnchoringAI/anchoring-ai/assets/20156958/eece7096-7e54-476e-a0f9-93926918ada1

Upcoming Features

  • Expanded Language Model Support: Integration with more language models.
  • Extended Capabilities: Additional extensions and a new chat mode.
  • Advanced Evaluation Metrics: Custom modules for calculating evaluation metrics.
  • Robust Security: Strengthened security measures.
  • Enhanced Modularity: Improved standard components for increased flexibility.

Docker Deployment

If you prefer to deploy Anchoring AI using Docker, this section provides a step-by-step guide to do so.

Prerequisites

  • Docker must be installed on your system.

Instructions

  1. Clone the GitHub Repository
    If you haven't already, clone the repository to your local machine.

    git clone https://github.com/AnchoringAI/anchoring-ai.git
  2. Navigate to the Project Root Directory

    cd anchoring-ai
  3. Build the Docker Image

    docker-compose build
  4. Run Docker Containers

    docker-compose up

Your application should now be accessible at localhost:3000.

Teardown

  • Stop Docker Containers

    docker-compose down
  • Remove All Docker Resources (Optional)

    docker system prune -a

Installation Guide

This guide is primarily designed for Linux and macOS. Windows users can still follow along with some adjustments specified below.

Prerequisites

Before starting the installation, ensure you have administrator-level access to your system.

Note for Windows Users

  1. Install and start Redis which is not supported on Windows through Windows Subsystem for Linux (WSL).
  2. Comment out uwsgi==2.0.21 in back-end/requirements.txt as this package is not supported for Windows.
  3. Add --pool=solo for the Celery worker args in back-end/src/celery_worker.py to support batch jobs.

Step 1: Install MySQL 8.0

  1. Download MySQL 8.0: Go to the official MySQL downloads page and download the MySQL 8.0 installer for your operating system.

  2. Install MySQL: Run the installer and follow the on-screen instructions to install MySQL.

    • Choose a setup type (Developer Default, Server only, etc.)
    • Configure the server (if prompted)
    • Set the root password and optionally create other users
  3. Start MySQL:

    • For Linux and macOS, you can usually start MySQL with the following command:
      sudo systemctl start mysql
    • For Windows, it often starts automatically or you can start it through the Services application.
  4. Verify Installation: Open a terminal and execute the following:

    mysql --version

    This should display the installed MySQL version.

Step 2: Install Redis 5.0.7

  1. Download Redis 5.0.7: Visit the official Redis downloads page and download the Redis 5.0.7 tarball or installer for your operating system.
  2. Install Redis:
    • For Linux and macOS: Extract the tarball and run the following commands in the terminal:
      cd redis-5.0.7 make make install
    • For Windows: You may need to use Windows Subsystem for Linux (WSL) or a Redis Windows port.
  3. Start Redis:
    • For Linux and macOS: You can usually start Redis by running:
      redis-server
    • For Windows: If you're using WSL, you can start it the same way as on Linux.
  4. Verify Installation: Open a new terminal and run:
    redis-cli ping
    If Redis is running, this will return "PONG".

Step 3: Install Node.js v18.16.0

  1. Download and install Node.js version 18.16.0 from the official website.
  2. Verify the installation by running node -v in the terminal.

Step 4: Install Python 3.8.10

  1. Download and install Python version 3.8.10 from the official website.
  2. Verify the installation by running python --version or python3 --version in the terminal.

Step 5: Clone the GitHub Repository

Run the following command in the terminal:

git clone https://github.com/AnchoringAI/anchoring-ai.git

Step 6: Initialize and Configure Database

Initialize Database

  1. Open your terminal and navigate to the scripts directory within your project:

    cd path/to/your/project/scripts
  2. Open the MySQL shell by entering the following command:

    mysql -u [your_username] -p

    You will be prompted to enter the password for [your_username].

  3. Once inside the MySQL shell, switch to the database you intend to use (if it already exists). Replace [your_database] with the name of your database:

    use [your_database];
  4. Execute the init_db.sql script to initialize your MySQL database:

    source init_db.sql

Configure Database Connection in Code

  1. Navigate to the config.py file located in the back-end/src directory:

    cd path/to/your/project/back-end/src
  2. Open config.py in your favorite text editor and locate the DevelopmentConfig class.

  3. Update the database configuration class to match your MySQL settings:

    class DevelopmentConfig(BaseConfig): USERNAME = '[your_username]' PASSWORD = '[your_password]' HOST = 'localhost' PORT = '3306' DATABASE = '[your_database]' DB_URI = f'mysql+pymysql://{USERNAME}:{PASSWORD}@{HOST}:{PORT}/{DATABASE}?charset=utf8' SQLALCHEMY_DATABASE_URI = DB_URI

Replace [your_username], [your_password], and [your_database] with the MySQL username, password, and database name you've chosen.

After completing these steps, your database should be initialized and your application configured to connect to it.

Step 7: Set Up Front-end

  1. Change your current directory to the front-end folder:
cd front-end
  1. Install all necessary packages:
npm install
  1. Start the front-end server:
npm start

Step 8: Set Up Back-end

  1. Change your current directory to the root directory and then navigate to back-end:
cd .. cd back-end
  1. Install all required Python packages:
pip install -r requirements.txt

Step 9: Run the Application

  1. Navigate to the src directory:

    cd src
  2. Start the Python application:

    • For Linux and macOS:
      python3 app.py
    • For Windows:
      python app.py
  3. Start the Celery worker in the background:

    • For Linux and macOS:
      python3 celery_worker.py >> logs/celery_worker_log.txt 2>&1
    • For Windows:
      python celery_worker.py >> logs/celery_worker_log.txt 2>&1

After completing these steps, you should be able to see the app running at localhost:3000.

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多