anchoring-ai

anchoring-ai

无代码AI应用构建协作开源平台

Anchoring AI是一个无代码AI应用构建平台,支持团队协作开发基于GPT等大型语言模型的应用。平台提供拖放式界面、模块化设计、批处理功能和提示管理,便于创建和分享AI应用。它集成Langchain,支持自定义认证,并通过缓存优化提升性能、降低成本。该开源项目旨在促进团队向AI驱动转型。

Anchoring AILLM应用开源工具无代码界面模块化设计Github开源项目

Anchoring AI

<a href="https://opensource.org/licenses/Apache-2.0"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License: Apache"></a> <a href="https://discord.gg/rZ6ne9HRq4"><img src="https://img.shields.io/badge/Discord-Join-blue?logo=discord&logoColor=white&color=blue" alt="Discord Follow"></a> <a href="https://docs.anchoring.ai/"><img src="https://img.shields.io/badge/document-English-blue.svg" alt="EN doc"></a>

Why Anchoring AI? | Live Demo and Videos | Docker Deployment | Installation Guide

Why Anchoring AI?

Anchoring AI is an open-source no-code tool for teams to collaborate on building, evaluating, and hosting applications leveraging GPT and other large language models. You could easily build and share LLM-powered apps, manage your budget and run batch jobs. With Anchoring AI, managing access, controlling budgets, and running batch jobs is a breeze. We aim to be the destination of choice for transforming your team into an AI-centric powerhouse.

We provide:

  • No-Code Interface: Quickly build apps with language models.
  • Modular Design: Easily add your own models, datasets and extensions.
  • Drag-and-Drop: Chain components to create powerful apps.
  • Batch Processing: Efficiently handle evaluations and repetitive tasks.
  • Prompt Management: Effortlessly manage your prompt and chains.
  • Easy Sharing: Streamline collaboration and sharing.
  • Secure Access: Customizable authentication for team management.
  • Langchain Integration: Seamless compatibility with Langchain (Python).
  • Optimized Caching: Reduce costs and boost performance.

Live Demo and Videos

Live Website

You can check out our Alpha Release here.

Videos

https://github.com/AnchoringAI/anchoring-ai/assets/20156958/eece7096-7e54-476e-a0f9-93926918ada1

Upcoming Features

  • Expanded Language Model Support: Integration with more language models.
  • Extended Capabilities: Additional extensions and a new chat mode.
  • Advanced Evaluation Metrics: Custom modules for calculating evaluation metrics.
  • Robust Security: Strengthened security measures.
  • Enhanced Modularity: Improved standard components for increased flexibility.

Docker Deployment

If you prefer to deploy Anchoring AI using Docker, this section provides a step-by-step guide to do so.

Prerequisites

  • Docker must be installed on your system.

Instructions

  1. Clone the GitHub Repository
    If you haven't already, clone the repository to your local machine.

    git clone https://github.com/AnchoringAI/anchoring-ai.git
  2. Navigate to the Project Root Directory

    cd anchoring-ai
  3. Build the Docker Image

    docker-compose build
  4. Run Docker Containers

    docker-compose up

Your application should now be accessible at localhost:3000.

Teardown

  • Stop Docker Containers

    docker-compose down
  • Remove All Docker Resources (Optional)

    docker system prune -a

Installation Guide

This guide is primarily designed for Linux and macOS. Windows users can still follow along with some adjustments specified below.

Prerequisites

Before starting the installation, ensure you have administrator-level access to your system.

Note for Windows Users

  1. Install and start Redis which is not supported on Windows through Windows Subsystem for Linux (WSL).
  2. Comment out uwsgi==2.0.21 in back-end/requirements.txt as this package is not supported for Windows.
  3. Add --pool=solo for the Celery worker args in back-end/src/celery_worker.py to support batch jobs.

Step 1: Install MySQL 8.0

  1. Download MySQL 8.0: Go to the official MySQL downloads page and download the MySQL 8.0 installer for your operating system.

  2. Install MySQL: Run the installer and follow the on-screen instructions to install MySQL.

    • Choose a setup type (Developer Default, Server only, etc.)
    • Configure the server (if prompted)
    • Set the root password and optionally create other users
  3. Start MySQL:

    • For Linux and macOS, you can usually start MySQL with the following command:
      sudo systemctl start mysql
    • For Windows, it often starts automatically or you can start it through the Services application.
  4. Verify Installation: Open a terminal and execute the following:

    mysql --version

    This should display the installed MySQL version.

Step 2: Install Redis 5.0.7

  1. Download Redis 5.0.7: Visit the official Redis downloads page and download the Redis 5.0.7 tarball or installer for your operating system.
  2. Install Redis:
    • For Linux and macOS: Extract the tarball and run the following commands in the terminal:
      cd redis-5.0.7 make make install
    • For Windows: You may need to use Windows Subsystem for Linux (WSL) or a Redis Windows port.
  3. Start Redis:
    • For Linux and macOS: You can usually start Redis by running:
      redis-server
    • For Windows: If you're using WSL, you can start it the same way as on Linux.
  4. Verify Installation: Open a new terminal and run:
    redis-cli ping
    If Redis is running, this will return "PONG".

Step 3: Install Node.js v18.16.0

  1. Download and install Node.js version 18.16.0 from the official website.
  2. Verify the installation by running node -v in the terminal.

Step 4: Install Python 3.8.10

  1. Download and install Python version 3.8.10 from the official website.
  2. Verify the installation by running python --version or python3 --version in the terminal.

Step 5: Clone the GitHub Repository

Run the following command in the terminal:

git clone https://github.com/AnchoringAI/anchoring-ai.git

Step 6: Initialize and Configure Database

Initialize Database

  1. Open your terminal and navigate to the scripts directory within your project:

    cd path/to/your/project/scripts
  2. Open the MySQL shell by entering the following command:

    mysql -u [your_username] -p

    You will be prompted to enter the password for [your_username].

  3. Once inside the MySQL shell, switch to the database you intend to use (if it already exists). Replace [your_database] with the name of your database:

    use [your_database];
  4. Execute the init_db.sql script to initialize your MySQL database:

    source init_db.sql

Configure Database Connection in Code

  1. Navigate to the config.py file located in the back-end/src directory:

    cd path/to/your/project/back-end/src
  2. Open config.py in your favorite text editor and locate the DevelopmentConfig class.

  3. Update the database configuration class to match your MySQL settings:

    class DevelopmentConfig(BaseConfig): USERNAME = '[your_username]' PASSWORD = '[your_password]' HOST = 'localhost' PORT = '3306' DATABASE = '[your_database]' DB_URI = f'mysql+pymysql://{USERNAME}:{PASSWORD}@{HOST}:{PORT}/{DATABASE}?charset=utf8' SQLALCHEMY_DATABASE_URI = DB_URI

Replace [your_username], [your_password], and [your_database] with the MySQL username, password, and database name you've chosen.

After completing these steps, your database should be initialized and your application configured to connect to it.

Step 7: Set Up Front-end

  1. Change your current directory to the front-end folder:
cd front-end
  1. Install all necessary packages:
npm install
  1. Start the front-end server:
npm start

Step 8: Set Up Back-end

  1. Change your current directory to the root directory and then navigate to back-end:
cd .. cd back-end
  1. Install all required Python packages:
pip install -r requirements.txt

Step 9: Run the Application

  1. Navigate to the src directory:

    cd src
  2. Start the Python application:

    • For Linux and macOS:
      python3 app.py
    • For Windows:
      python app.py
  3. Start the Celery worker in the background:

    • For Linux and macOS:
      python3 celery_worker.py >> logs/celery_worker_log.txt 2>&1
    • For Windows:
      python celery_worker.py >> logs/celery_worker_log.txt 2>&1

After completing these steps, you should be able to see the app running at localhost:3000.

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多