<a href="https://opensource.org/licenses/Apache-2.0"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License: Apache"></a> <a href="https://discord.gg/rZ6ne9HRq4"><img src="https://img.shields.io/badge/Discord-Join-blue?logo=discord&logoColor=white&color=blue" alt="Discord Follow"></a> <a href="https://docs.anchoring.ai/"><img src="https://img.shields.io/badge/document-English-blue.svg" alt="EN doc"></a>
Why Anchoring AI? | Live Demo and Videos | Docker Deployment | Installation Guide
Anchoring AI is an open-source no-code tool for teams to collaborate on building, evaluating, and hosting applications leveraging GPT and other large language models. You could easily build and share LLM-powered apps, manage your budget and run batch jobs. With Anchoring AI, managing access, controlling budgets, and running batch jobs is a breeze. We aim to be the destination of choice for transforming your team into an AI-centric powerhouse.
We provide:
You can check out our Alpha Release here.
https://github.com/AnchoringAI/anchoring-ai/assets/20156958/eece7096-7e54-476e-a0f9-93926918ada1
If you prefer to deploy Anchoring AI using Docker, this section provides a step-by-step guide to do so.
Clone the GitHub Repository
If you haven't already, clone the repository to your local machine.
git clone https://github.com/AnchoringAI/anchoring-ai.git
Navigate to the Project Root Directory
cd anchoring-ai
Build the Docker Image
docker-compose build
Run Docker Containers
docker-compose up
Your application should now be accessible at localhost:3000.
Stop Docker Containers
docker-compose down
Remove All Docker Resources (Optional)
docker system prune -a
This guide is primarily designed for Linux and macOS. Windows users can still follow along with some adjustments specified below.
Before starting the installation, ensure you have administrator-level access to your system.
Note for Windows Users
- Install and start Redis which is not supported on Windows through Windows Subsystem for Linux (WSL).
- Comment out
uwsgi==2.0.21inback-end/requirements.txtas this package is not supported for Windows.- Add
--pool=solofor the Celery worker args inback-end/src/celery_worker.pyto support batch jobs.
Download MySQL 8.0: Go to the official MySQL downloads page and download the MySQL 8.0 installer for your operating system.
Install MySQL: Run the installer and follow the on-screen instructions to install MySQL.
Start MySQL:
sudo systemctl start mysql
Verify Installation: Open a terminal and execute the following:
mysql --version
This should display the installed MySQL version.
cd redis-5.0.7 make make install
redis-server
If Redis is running, this will return "PONG".redis-cli ping
node -v in the terminal.python --version or python3 --version in the terminal.Run the following command in the terminal:
git clone https://github.com/AnchoringAI/anchoring-ai.git
Open your terminal and navigate to the scripts directory within your project:
cd path/to/your/project/scripts
Open the MySQL shell by entering the following command:
mysql -u [your_username] -p
You will be prompted to enter the password for [your_username].
Once inside the MySQL shell, switch to the database you intend to use (if it already exists). Replace [your_database] with the name of your database:
use [your_database];
Execute the init_db.sql script to initialize your MySQL database:
source init_db.sql
Navigate to the config.py file located in the back-end/src directory:
cd path/to/your/project/back-end/src
Open config.py in your favorite text editor and locate the DevelopmentConfig class.
Update the database configuration class to match your MySQL settings:
class DevelopmentConfig(BaseConfig): USERNAME = '[your_username]' PASSWORD = '[your_password]' HOST = 'localhost' PORT = '3306' DATABASE = '[your_database]' DB_URI = f'mysql+pymysql://{USERNAME}:{PASSWORD}@{HOST}:{PORT}/{DATABASE}?charset=utf8' SQLALCHEMY_DATABASE_URI = DB_URI
Replace [your_username], [your_password], and [your_database] with the MySQL username, password, and database name you've chosen.
After completing these steps, your database should be initialized and your application configured to connect to it.
front-end folder:cd front-end
npm install
npm start
back-end:cd .. cd back-end
pip install -r requirements.txt
Navigate to the src directory:
cd src
Start the Python application:
python3 app.py
python app.py
Start the Celery worker in the background:
python3 celery_worker.py >> logs/celery_worker_log.txt 2>&1
python celery_worker.py >> logs/celery_worker_log.txt 2>&1
After completing these steps, you should be able to see the app running at localhost:3000.


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘 画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号