gym-mtsim

gym-mtsim

MetaTrader 5交易模拟与强化学习环境集成库

gym-mtsim是一个整合MetaTrader 5交易模拟器和OpenAI Gym强化学习环境的Python库。它支持多资产交易模拟、回测可视化及强化学习环境构建。该项目提供通用、易用且可读性强的工具,涵盖完整交易流程。适合各层次用户使用,可进行交易策略开发和测试。

MetaTrader 5OpenAI Gym交易模拟强化学习回测Github开源项目

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator

MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for reinforcement learning-based trading algorithms. MetaTrader 5 is a multi-asset platform that allows trading Forex, Stocks, Crypto, and Futures. It is one of the most popular trading platforms and supports numerous useful features, such as opening demo accounts on various brokers.

The simulator is separated from the Gym environment and can work independently. Although the Gym environment is designed to be suitable for RL frameworks, it is also proper for backtesting and classic analysis.

The goal of this project was to provide a general-purpose, flexible, and easy-to-use library with a focus on code readability that enables users to do all parts of the trading process through it from 0 to 100. So, gym-mtsim is not just a testing tool or a Gym environment. It is a combination of a real-world simulator, a backtesting tool with high detail visualization, and a Gym environment appropriate for RL/classic algorithms.

Note: For beginners, it is recommended to check out the gym-anytrading project.

Prerequisites

Install MetaTrader 5

Download and install MetaTrader 5 software from here.

Open a demo account on any broker. By default, the software opens a demo account automatically after installation.

Explore the software and try to get familiar with it by trading different symbols in both hedged and unhedged accounts.

Install gym-mtsim

Via PIP

pip install gym-mtsim

From Repository

git clone https://github.com/AminHP/gym-mtsim cd gym-mtsim pip install -e . ## or pip install --upgrade --no-deps --force-reinstall https://github.com/AminHP/gym-mtsim/archive/main.zip

Install stable-baselines3

This package is required to run some examples. Install it from here.

Components

1. SymbolInfo

This is a data class that contains the essential properties of a symbol. Try to get fully acquainted with these properties in case they are unfamiliar. There are plenty of resources that provide good explanations.

2. Order

This is another data class that consists of information of an order. Each order has the following properties:

id: A unique number that helps with tracking orders.

type: An enum that specifies the type of the order. It can be either Buy or Sell.

symbol: The symbol selected for the order.

volume: The volume chose for the order. It can be a multiple of volume_step between volume_min and volume_max.

fee: It is a tricky property. In MetaTrader, there is no such concept called fee. Each symbol has bid and ask prices, the difference between which represents the fee. Although MetaTrader API provides these bid/ask prices for the recent past, it is not possible to access them for the distant past. Therefore, the fee property helps to manage the mentioned difference.

entry_time: The time when the order was placed.

entry_price: The close price when the order was placed.

exit_time: The time when the order was closed.

exit_price: The close price when the order was closed.

profit: The amount of profit earned by this order so far.

margin: The required amount of margin for this order.

closed: A boolean that specifies whether this order is closed or not.

3. MtSimulator

This is the core class that simulates the main parts of MetaTrader. Most of its public properties and methods are explained here. But feel free to take a look at the complete source code.

  • Properties:

    unit: The unit currency. It is usually USD, but it can be anything the broker allows, such as EUR.

    balance: The amount of money before taking into account any open positions.

    equity: The amount of money, including the value of any open positions.

    margin: The amount of money which is required for having positions opened.

    leverage: The leverage ratio.

    free_margin: The amount of money that is available to open new positions.

    margin_level: The ratio between equity and margin.

    stop_out_level: If the margin_level drops below stop_out_level, the most unprofitable position will be closed automatically by the broker.

    hedge: A boolean that specifies whether hedging is enabled or not.

    symbols_info: A dictionary that contains symbols' information.

    symbols_data: A dictionary that contains symbols' OHLCV data.

    orders: The list of open orders.

    closed_orders: The list of closed orders.

    current_time: The current time of the system.

  • Methods:

    download_data: Downloads required data from MetaTrader for a list of symbols in a time range. This method can be overridden in order to download data from servers other than MetaTrader. Note that this method only works on Windows, as the MetaTrader5 Python package is not available on other platforms.

    save_symbols: Saves the downloaded symbols' data to a file.

    load_symbols: Loads the symbols' data from a file.

    tick: Moves forward in time (by a delta time) and updates orders and other related properties.

    create_order: Creates a Buy or Sell order and updates related properties.

    close_order: Closes an order and updates related properties.

    get_state: Returns the state of the system. The result is similar to the Trading tab and History tab of the Toolbox window in MetaTrader software.

4. MtEnv

This is the Gym environment that works on top of the MtSim. Most of its public properties and methods are explained here. But feel free to take a look at the complete source code.

  • Properties:

    original_simulator: An instance of MtSim class as a baseline for simulating the system.

    simulator: The current simulator in use. It is a copy of the original_simulator.

    trading_symbols: The list of symbols to trade.

    time_points: A list of time points based on which the simulator moves time. The default value is taken from the pandas DataFrame.Index of the first symbol in the trading_symbols list.

    hold_threshold: A probability threshold that controls holding or placing a new order.

    close_threshold: A probability threshold that controls closing an order.

    fee: A constant number or a callable that takes a symbol as input and returns the fee based on that.

    symbol_max_orders: Specifies the maximum number of open positions per symbol in hedge trading.

    multiprocessing_processes: Specifies the maximum number of processes used for parallel processing.

    prices: The symbol prices over time. It is used to calculate signal features and render the environment.

    signal_features: The extracted features over time. It is used to generate Gym observations.

    window_size: The number of time points (current and previous points) as the length of each observation's features.

    features_shape: The shape of a single observation's features.

    action_space: The Gym action_space property. It has a complex structure since stable-baselines does not support Dict or 2D Box action spaces. The action space is a 1D vector of size count(trading_symbols) * (symbol_max_orders + 2). For each symbol, two types of actions can be performed, closing previous orders and placing a new order. The former is controlled by the first symbol_max_orders elements and the latter is controlled by the last two elements. Therefore, the action for each symbol is [probability of closing order 1, probability of closing order 2, ..., probability of closing order symbol_max_orders, probability of holding or creating a new order, volume of the new order]. The last two elements specify whether to hold or place a new order and the volume of the new order (positive volume indicates buy and negative volume indicates sell). These elements are a number in range (-∞, ∞), but the probability values must be in the range [0, 1]. This is a problem with stable-baselines as mentioned earlier. To overcome this problem, it is assumed that the probability values belong to the logit function. So, applying the expit function on them gives the desired probability values in the range [0, 1]. This function is applied in the step method of the environment.

    observation_space: The Gym observation_space property. Each observation contains information about balance, equity, margin, features, and orders. The features is a window on the signal_features from index current_tick - window_size + 1 to current_tick. The orders is a 3D array. Its first dimension specifies the symbol index in the trading_symbols list. The second dimension specifies the order number (each symbol can have more than one open order at the same time in hedge trading). The last dimension has three elements, entry_price, volume, and profit of corresponding order.

    history: Stores the information of all steps.

  • Methods:

    seed: The typical Gym seed method.

    reset: The typical Gym reset method.

    step: The typical Gym step method.

    render: The typical Gym render method. It can render in three modes, human, simple_figure, and advanced_figure.

    close: The typical Gym close method.

  • Virtual Methods:

    _get_prices: It is called in the constructor and calculates symbol prices.

    _process_data: It is called in the constructor and calculates signal_features.

    _calculate_reward: The reward function for the RL agent.

A Simple Example

MtSim

Create a simulator with custom parameters

import pytz from datetime import datetime, timedelta from gym_mtsim import MtSimulator, OrderType, Timeframe, FOREX_DATA_PATH sim = MtSimulator( unit='USD', balance=10000., leverage=100., stop_out_level=0.2, hedge=False, ) if not sim.load_symbols(FOREX_DATA_PATH): sim.download_data( symbols=['EURUSD', 'GBPCAD', 'GBPUSD', 'USDCAD', 'USDCHF', 'GBPJPY', 'USDJPY'], time_range=( datetime(2021, 5, 5, tzinfo=pytz.UTC), datetime(2021, 9, 5, tzinfo=pytz.UTC) ), timeframe=Timeframe.D1 ) sim.save_symbols(FOREX_DATA_PATH)

Place some orders

sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC) order1 = sim.create_order( order_type=OrderType.Buy, symbol='GBPCAD', volume=1., fee=0.0003, ) sim.tick(timedelta(days=2)) order2 = sim.create_order( order_type=OrderType.Sell, symbol='USDJPY', volume=2., fee=0.01, ) sim.tick(timedelta(days=5)) state = sim.get_state() print( f"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\n" f"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\n" ) state['orders']
balance: 10000.0, equity: 10717.58118589908, margin: 3375.480933228619
free_margin: 7342.1002526704615, margin_level: 3.1751271592500743

<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Id</th> <th>Symbol</th> <th>Type</th> <th>Volume</th> <th>Entry Time</th> <th>Entry Price</th> <th>Exit Time</th> <th>Exit Price</th> <th>Exit Balance</th> <th>Exit Equity</th> <th>Profit</th> <th>Margin</th> <th>Fee</th> <th>Closed</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> <td>USDJPY</td> <td>Sell</td> <td>2.0</td> <td>2021-09-01 00:17:52+00:00</td> <td>110.02500</td> <td>2021-09-06 00:17:52+00:00</td> <td>109.71200</td> <td>NaN</td> <td>NaN</td> <td>552.355257</td> <td>2000.000000</td> <td>0.0100</td> <td>False</td> </tr> <tr> <th>1</th> <td>1</td> <td>GBPCAD</td> <td>Buy</td> <td>1.0</td> <td>2021-08-30 00:17:52+00:00</td> <td>1.73389</td> <td>2021-09-06 00:17:52+00:00</td> <td>1.73626</td> <td>NaN</td> <td>NaN</td> <td>165.225928</td> <td>1375.480933</td> <td>0.0003</td> <td>False</td> </tr> </tbody> </table> </div>

Close all orders

order1_profit = sim.close_order(order1) order2_profit = sim.close_order(order2) # alternatively: # for order in sim.orders: # sim.close_order(order) state = sim.get_state() print( f"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\n" f"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\n" ) state['orders']
balance: 10717.58118589908, equity: 10717.58118589908, margin: 0.0
free_margin: 10717.58118589908, margin_level: inf

<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Id</th> <th>Symbol</th> <th>Type</th> <th>Volume</th> <th>Entry Time</th> <th>Entry Price</th> <th>Exit Time</th> <th>Exit Price</th> <th>Exit Balance</th> <th>Exit Equity</th> <th>Profit</th> <th>Margin</th> <th>Fee</th> <th>Closed</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> <td>USDJPY</td> <td>Sell</td> <td>2.0</td> <td>2021-09-01 00:17:52+00:00</td>

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多