gym-mtsim

gym-mtsim

MetaTrader 5交易模拟与强化学习环境集成库

gym-mtsim是一个整合MetaTrader 5交易模拟器和OpenAI Gym强化学习环境的Python库。它支持多资产交易模拟、回测可视化及强化学习环境构建。该项目提供通用、易用且可读性强的工具,涵盖完整交易流程。适合各层次用户使用,可进行交易策略开发和测试。

MetaTrader 5OpenAI Gym交易模拟强化学习回测Github开源项目

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator

MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for reinforcement learning-based trading algorithms. MetaTrader 5 is a multi-asset platform that allows trading Forex, Stocks, Crypto, and Futures. It is one of the most popular trading platforms and supports numerous useful features, such as opening demo accounts on various brokers.

The simulator is separated from the Gym environment and can work independently. Although the Gym environment is designed to be suitable for RL frameworks, it is also proper for backtesting and classic analysis.

The goal of this project was to provide a general-purpose, flexible, and easy-to-use library with a focus on code readability that enables users to do all parts of the trading process through it from 0 to 100. So, gym-mtsim is not just a testing tool or a Gym environment. It is a combination of a real-world simulator, a backtesting tool with high detail visualization, and a Gym environment appropriate for RL/classic algorithms.

Note: For beginners, it is recommended to check out the gym-anytrading project.

Prerequisites

Install MetaTrader 5

Download and install MetaTrader 5 software from here.

Open a demo account on any broker. By default, the software opens a demo account automatically after installation.

Explore the software and try to get familiar with it by trading different symbols in both hedged and unhedged accounts.

Install gym-mtsim

Via PIP

pip install gym-mtsim

From Repository

git clone https://github.com/AminHP/gym-mtsim cd gym-mtsim pip install -e . ## or pip install --upgrade --no-deps --force-reinstall https://github.com/AminHP/gym-mtsim/archive/main.zip

Install stable-baselines3

This package is required to run some examples. Install it from here.

Components

1. SymbolInfo

This is a data class that contains the essential properties of a symbol. Try to get fully acquainted with these properties in case they are unfamiliar. There are plenty of resources that provide good explanations.

2. Order

This is another data class that consists of information of an order. Each order has the following properties:

id: A unique number that helps with tracking orders.

type: An enum that specifies the type of the order. It can be either Buy or Sell.

symbol: The symbol selected for the order.

volume: The volume chose for the order. It can be a multiple of volume_step between volume_min and volume_max.

fee: It is a tricky property. In MetaTrader, there is no such concept called fee. Each symbol has bid and ask prices, the difference between which represents the fee. Although MetaTrader API provides these bid/ask prices for the recent past, it is not possible to access them for the distant past. Therefore, the fee property helps to manage the mentioned difference.

entry_time: The time when the order was placed.

entry_price: The close price when the order was placed.

exit_time: The time when the order was closed.

exit_price: The close price when the order was closed.

profit: The amount of profit earned by this order so far.

margin: The required amount of margin for this order.

closed: A boolean that specifies whether this order is closed or not.

3. MtSimulator

This is the core class that simulates the main parts of MetaTrader. Most of its public properties and methods are explained here. But feel free to take a look at the complete source code.

  • Properties:

    unit: The unit currency. It is usually USD, but it can be anything the broker allows, such as EUR.

    balance: The amount of money before taking into account any open positions.

    equity: The amount of money, including the value of any open positions.

    margin: The amount of money which is required for having positions opened.

    leverage: The leverage ratio.

    free_margin: The amount of money that is available to open new positions.

    margin_level: The ratio between equity and margin.

    stop_out_level: If the margin_level drops below stop_out_level, the most unprofitable position will be closed automatically by the broker.

    hedge: A boolean that specifies whether hedging is enabled or not.

    symbols_info: A dictionary that contains symbols' information.

    symbols_data: A dictionary that contains symbols' OHLCV data.

    orders: The list of open orders.

    closed_orders: The list of closed orders.

    current_time: The current time of the system.

  • Methods:

    download_data: Downloads required data from MetaTrader for a list of symbols in a time range. This method can be overridden in order to download data from servers other than MetaTrader. Note that this method only works on Windows, as the MetaTrader5 Python package is not available on other platforms.

    save_symbols: Saves the downloaded symbols' data to a file.

    load_symbols: Loads the symbols' data from a file.

    tick: Moves forward in time (by a delta time) and updates orders and other related properties.

    create_order: Creates a Buy or Sell order and updates related properties.

    close_order: Closes an order and updates related properties.

    get_state: Returns the state of the system. The result is similar to the Trading tab and History tab of the Toolbox window in MetaTrader software.

4. MtEnv

This is the Gym environment that works on top of the MtSim. Most of its public properties and methods are explained here. But feel free to take a look at the complete source code.

  • Properties:

    original_simulator: An instance of MtSim class as a baseline for simulating the system.

    simulator: The current simulator in use. It is a copy of the original_simulator.

    trading_symbols: The list of symbols to trade.

    time_points: A list of time points based on which the simulator moves time. The default value is taken from the pandas DataFrame.Index of the first symbol in the trading_symbols list.

    hold_threshold: A probability threshold that controls holding or placing a new order.

    close_threshold: A probability threshold that controls closing an order.

    fee: A constant number or a callable that takes a symbol as input and returns the fee based on that.

    symbol_max_orders: Specifies the maximum number of open positions per symbol in hedge trading.

    multiprocessing_processes: Specifies the maximum number of processes used for parallel processing.

    prices: The symbol prices over time. It is used to calculate signal features and render the environment.

    signal_features: The extracted features over time. It is used to generate Gym observations.

    window_size: The number of time points (current and previous points) as the length of each observation's features.

    features_shape: The shape of a single observation's features.

    action_space: The Gym action_space property. It has a complex structure since stable-baselines does not support Dict or 2D Box action spaces. The action space is a 1D vector of size count(trading_symbols) * (symbol_max_orders + 2). For each symbol, two types of actions can be performed, closing previous orders and placing a new order. The former is controlled by the first symbol_max_orders elements and the latter is controlled by the last two elements. Therefore, the action for each symbol is [probability of closing order 1, probability of closing order 2, ..., probability of closing order symbol_max_orders, probability of holding or creating a new order, volume of the new order]. The last two elements specify whether to hold or place a new order and the volume of the new order (positive volume indicates buy and negative volume indicates sell). These elements are a number in range (-∞, ∞), but the probability values must be in the range [0, 1]. This is a problem with stable-baselines as mentioned earlier. To overcome this problem, it is assumed that the probability values belong to the logit function. So, applying the expit function on them gives the desired probability values in the range [0, 1]. This function is applied in the step method of the environment.

    observation_space: The Gym observation_space property. Each observation contains information about balance, equity, margin, features, and orders. The features is a window on the signal_features from index current_tick - window_size + 1 to current_tick. The orders is a 3D array. Its first dimension specifies the symbol index in the trading_symbols list. The second dimension specifies the order number (each symbol can have more than one open order at the same time in hedge trading). The last dimension has three elements, entry_price, volume, and profit of corresponding order.

    history: Stores the information of all steps.

  • Methods:

    seed: The typical Gym seed method.

    reset: The typical Gym reset method.

    step: The typical Gym step method.

    render: The typical Gym render method. It can render in three modes, human, simple_figure, and advanced_figure.

    close: The typical Gym close method.

  • Virtual Methods:

    _get_prices: It is called in the constructor and calculates symbol prices.

    _process_data: It is called in the constructor and calculates signal_features.

    _calculate_reward: The reward function for the RL agent.

A Simple Example

MtSim

Create a simulator with custom parameters

import pytz from datetime import datetime, timedelta from gym_mtsim import MtSimulator, OrderType, Timeframe, FOREX_DATA_PATH sim = MtSimulator( unit='USD', balance=10000., leverage=100., stop_out_level=0.2, hedge=False, ) if not sim.load_symbols(FOREX_DATA_PATH): sim.download_data( symbols=['EURUSD', 'GBPCAD', 'GBPUSD', 'USDCAD', 'USDCHF', 'GBPJPY', 'USDJPY'], time_range=( datetime(2021, 5, 5, tzinfo=pytz.UTC), datetime(2021, 9, 5, tzinfo=pytz.UTC) ), timeframe=Timeframe.D1 ) sim.save_symbols(FOREX_DATA_PATH)

Place some orders

sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC) order1 = sim.create_order( order_type=OrderType.Buy, symbol='GBPCAD', volume=1., fee=0.0003, ) sim.tick(timedelta(days=2)) order2 = sim.create_order( order_type=OrderType.Sell, symbol='USDJPY', volume=2., fee=0.01, ) sim.tick(timedelta(days=5)) state = sim.get_state() print( f"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\n" f"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\n" ) state['orders']
balance: 10000.0, equity: 10717.58118589908, margin: 3375.480933228619
free_margin: 7342.1002526704615, margin_level: 3.1751271592500743

<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Id</th> <th>Symbol</th> <th>Type</th> <th>Volume</th> <th>Entry Time</th> <th>Entry Price</th> <th>Exit Time</th> <th>Exit Price</th> <th>Exit Balance</th> <th>Exit Equity</th> <th>Profit</th> <th>Margin</th> <th>Fee</th> <th>Closed</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> <td>USDJPY</td> <td>Sell</td> <td>2.0</td> <td>2021-09-01 00:17:52+00:00</td> <td>110.02500</td> <td>2021-09-06 00:17:52+00:00</td> <td>109.71200</td> <td>NaN</td> <td>NaN</td> <td>552.355257</td> <td>2000.000000</td> <td>0.0100</td> <td>False</td> </tr> <tr> <th>1</th> <td>1</td> <td>GBPCAD</td> <td>Buy</td> <td>1.0</td> <td>2021-08-30 00:17:52+00:00</td> <td>1.73389</td> <td>2021-09-06 00:17:52+00:00</td> <td>1.73626</td> <td>NaN</td> <td>NaN</td> <td>165.225928</td> <td>1375.480933</td> <td>0.0003</td> <td>False</td> </tr> </tbody> </table> </div>

Close all orders

order1_profit = sim.close_order(order1) order2_profit = sim.close_order(order2) # alternatively: # for order in sim.orders: # sim.close_order(order) state = sim.get_state() print( f"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\n" f"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\n" ) state['orders']
balance: 10717.58118589908, equity: 10717.58118589908, margin: 0.0
free_margin: 10717.58118589908, margin_level: inf

<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Id</th> <th>Symbol</th> <th>Type</th> <th>Volume</th> <th>Entry Time</th> <th>Entry Price</th> <th>Exit Time</th> <th>Exit Price</th> <th>Exit Balance</th> <th>Exit Equity</th> <th>Profit</th> <th>Margin</th> <th>Fee</th> <th>Closed</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> <td>USDJPY</td> <td>Sell</td> <td>2.0</td> <td>2021-09-01 00:17:52+00:00</td>

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多