data-augmentation-review

data-augmentation-review

全面数据增强技术助力机器学习模型优化

该项目汇集了多领域数据增强资源,包括计算机视觉、自然语言处理、音频和时间序列分析。内容涵盖GitHub仓库、开源库、学术论文等,详细介绍了图像变换、文本生成、音频处理等增强技术。此外,还收录了自动增强和特定领域增强方法,为机器学习研究人员和实践者提供了全面的数据增强参考。

数据增强计算机视觉机器学习GitHubPython库Github开源项目

DOI Visits Badge

Looking for a person who would like to help me maintain this repository! Contact me on LN or simply add a PR!

Data augmentation

List of useful data augmentation resources. You will find here some links to more or less popular github repos :sparkles:, libraries, papers :books: and other information.

Do you like it? Feel free to :star: ! Feel free to make a pull request!

Featured ⭐

Data augmentation for bias mitigation?

  • Targeted Data Augmentation for bias mitigation; Agnieszka Mikołajczyk-Bareła, Maria Ferlin, Michał Grochowski; The development of fair and ethical AI systems requires careful consideration of bias mitigation, an area often overlooked or ignored. In this study, we introduce a novel and efficient approach for addressing biases called Targeted Data Augmentation (TDA), which leverages classical data augmentation techniques to tackle the pressing issue of bias in data and models. Unlike the laborious task of removing biases, our method proposes to insert biases instead, resulting in improved performance. (...)

Introduction

Data augmentation can be simply described as any method that makes our dataset larger by making modified copies of the existing dataset. To create more images for example, we could zoom in and save the result, we could change the brightness of the image or rotate it. To get a bigger sound dataset we could try to raise or lower the pitch of the audio sample or slow down/speed up. Example data augmentation techniques are presented in the diagram below.

data augmentation diagram

DATA AUGMENTATION

  • Images augmentation

    • Affine transformations
      • Rotation
      • Scaling
      • Random cropping
      • Reflection
    • Elastic transformations
      • Contrast shift
      • Brightness shift
      • Blurring
      • Channel shuffle
    • Advanced transformations
      • Random erasing
      • Adding rain effects, sun flare...
      • Image blending
    • Neural-based transformations
      • Adversarial noise
      • Neural Style Transfer
      • Generative Adversarial Networks
  • Audio augmentation

    • Noise injection
    • Time shift
    • Time stretching
    • Random cropping
    • Pitch scaling
    • Dynamic range compression
    • Simple gain
    • Equalization
    • Voice conversion (Speech)
  • Natural Language Processing augmentation

    • Thesaurus
    • Text Generation
    • Back Translation
    • Word Embeddings
    • Contextualized Word Embeddings
    • Paraphrasing
    • Text perturbation
  • Time Series Data Augmentation

    • Basic approaches
      • Warping
      • Jittering
      • Perturbing
    • Advanced approaches
      • Embedding space
      • GAN/Adversarial
      • RL/Meta-Learning
  • Graph Augmentation

    • Node/edge dropping
    • Node/edge addition (graph modification)
    • Edge perturbation
  • Gene expression Augmentation

    • Data generation with GANs
    • Mixing observations
    • Random variable insertion
  • Automatic Augmentation (AutoAugment)

  • Other
    • Keypoints/landmarks Augmentation - usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping)
    • Spectrograms/Melspectrograms - usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)

If you wish to cite us, you can cite the following paper of your choice: Style transfer-based image synthesis as an efficient regularization technique in deep learning or Data augmentation for improving deep learning in image classification problem.

Star History Chart

Repositories

Computer vision

- albumentations is a Python library with a set of useful, large, and diverse data augmentation methods. It offers over 30 different types of augmentations, easy and ready to use. Moreover, as the authors prove, the library is faster than other libraries on most of the transformations.

Example Jupyter notebooks:

Example transformations: albumentations examples

- imgaug - is another very useful and widely used Python library. As the author describes: it helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much larger set of slightly altered images. It offers many augmentation techniques such as affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, and blurring.

Example Jupyter notebooks:

Example transformations: imgaug examples

- Kornia - is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.

At a granular level, Kornia is a library that consists of the following components:

ComponentDescription
korniaa Differentiable Computer Vision library, with strong GPU support
kornia.augmentationa module to perform data augmentation in the GPU
kornia.colora set of routines to perform color space conversions
kornia.contriba compilation of user contributed and experimental operators
kornia.enhancea module to perform normalization and intensity transformation
kornia.featurea module to perform feature detection
kornia.filtersa module to perform image filtering and edge detection
kornia.geometrya geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models
kornia.lossesa stack of loss functions to solve different vision tasks
kornia.morphologya module to perform morphological operations
kornia.utilsimage to tensor utilities and metrics for vision problems

kornia examples

- UDA - a simple data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

The details are available here: UNSUPERVISED DATA AUGMENTATION FOR CONSISTENCY TRAINING

- Data augmentation for object detection - Repository contains a code for the paper space tutorial series on adapting data augmentation methods for object detection tasks. They support a lot of data augmentations, like Horizontal Flipping, Scaling, Translation, Rotation, Shearing, Resizing.

Data augmentation for object detection - exmpale

- FMix - Understanding and Enhancing Mixed Sample Data Augmentation This repository contains the official implementation of the paper 'Understanding and Enhancing Mixed Sample Data Augmentation'

fmix example

- Super-AND - This repository is the Pytorch implementation of "A Comprehensive Approach to Unsupervised Embedding Learning based on AND Algorithm.

qualitative1.png

- vidaug - This Python library helps you with augmenting videos for your deep learning architectures. It converts input videos into a new, much larger set of slightly altered videos.

- Image augmentor - This is a simple Python data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

- torchsample - this python package provides High-Level Training, Data Augmentation, and Utilities for Pytorch. This toolbox provides data augmentation methods, regularizers and other utility functions. These transforms work directly on torch tensors:

  • Compose()
  • AddChannel()
  • SwapDims()
  • RangeNormalize()
  • StdNormalize()
  • Slice2D()
  • RandomCrop()
  • SpecialCrop()
  • Pad()
  • RandomFlip()

- Random erasing - The code is based on the paper: https://arxiv.org/abs/1708.04896. The Abstract:

In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: this https URL.

Example of random erasing

- data augmentation in C++ - Simple image

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多