data-augmentation-review

data-augmentation-review

全面数据增强技术助力机器学习模型优化

该项目汇集了多领域数据增强资源,包括计算机视觉、自然语言处理、音频和时间序列分析。内容涵盖GitHub仓库、开源库、学术论文等,详细介绍了图像变换、文本生成、音频处理等增强技术。此外,还收录了自动增强和特定领域增强方法,为机器学习研究人员和实践者提供了全面的数据增强参考。

数据增强计算机视觉机器学习GitHubPython库Github开源项目

DOI Visits Badge

Looking for a person who would like to help me maintain this repository! Contact me on LN or simply add a PR!

Data augmentation

List of useful data augmentation resources. You will find here some links to more or less popular github repos :sparkles:, libraries, papers :books: and other information.

Do you like it? Feel free to :star: ! Feel free to make a pull request!

Featured ⭐

Data augmentation for bias mitigation?

  • Targeted Data Augmentation for bias mitigation; Agnieszka Mikołajczyk-Bareła, Maria Ferlin, Michał Grochowski; The development of fair and ethical AI systems requires careful consideration of bias mitigation, an area often overlooked or ignored. In this study, we introduce a novel and efficient approach for addressing biases called Targeted Data Augmentation (TDA), which leverages classical data augmentation techniques to tackle the pressing issue of bias in data and models. Unlike the laborious task of removing biases, our method proposes to insert biases instead, resulting in improved performance. (...)

Introduction

Data augmentation can be simply described as any method that makes our dataset larger by making modified copies of the existing dataset. To create more images for example, we could zoom in and save the result, we could change the brightness of the image or rotate it. To get a bigger sound dataset we could try to raise or lower the pitch of the audio sample or slow down/speed up. Example data augmentation techniques are presented in the diagram below.

data augmentation diagram

DATA AUGMENTATION

  • Images augmentation

    • Affine transformations
      • Rotation
      • Scaling
      • Random cropping
      • Reflection
    • Elastic transformations
      • Contrast shift
      • Brightness shift
      • Blurring
      • Channel shuffle
    • Advanced transformations
      • Random erasing
      • Adding rain effects, sun flare...
      • Image blending
    • Neural-based transformations
      • Adversarial noise
      • Neural Style Transfer
      • Generative Adversarial Networks
  • Audio augmentation

    • Noise injection
    • Time shift
    • Time stretching
    • Random cropping
    • Pitch scaling
    • Dynamic range compression
    • Simple gain
    • Equalization
    • Voice conversion (Speech)
  • Natural Language Processing augmentation

    • Thesaurus
    • Text Generation
    • Back Translation
    • Word Embeddings
    • Contextualized Word Embeddings
    • Paraphrasing
    • Text perturbation
  • Time Series Data Augmentation

    • Basic approaches
      • Warping
      • Jittering
      • Perturbing
    • Advanced approaches
      • Embedding space
      • GAN/Adversarial
      • RL/Meta-Learning
  • Graph Augmentation

    • Node/edge dropping
    • Node/edge addition (graph modification)
    • Edge perturbation
  • Gene expression Augmentation

    • Data generation with GANs
    • Mixing observations
    • Random variable insertion
  • Automatic Augmentation (AutoAugment)

  • Other
    • Keypoints/landmarks Augmentation - usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping)
    • Spectrograms/Melspectrograms - usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)

If you wish to cite us, you can cite the following paper of your choice: Style transfer-based image synthesis as an efficient regularization technique in deep learning or Data augmentation for improving deep learning in image classification problem.

Star History Chart

Repositories

Computer vision

- albumentations is a Python library with a set of useful, large, and diverse data augmentation methods. It offers over 30 different types of augmentations, easy and ready to use. Moreover, as the authors prove, the library is faster than other libraries on most of the transformations.

Example Jupyter notebooks:

Example transformations: albumentations examples

- imgaug - is another very useful and widely used Python library. As the author describes: it helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much larger set of slightly altered images. It offers many augmentation techniques such as affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, and blurring.

Example Jupyter notebooks:

Example transformations: imgaug examples

- Kornia - is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.

At a granular level, Kornia is a library that consists of the following components:

ComponentDescription
korniaa Differentiable Computer Vision library, with strong GPU support
kornia.augmentationa module to perform data augmentation in the GPU
kornia.colora set of routines to perform color space conversions
kornia.contriba compilation of user contributed and experimental operators
kornia.enhancea module to perform normalization and intensity transformation
kornia.featurea module to perform feature detection
kornia.filtersa module to perform image filtering and edge detection
kornia.geometrya geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models
kornia.lossesa stack of loss functions to solve different vision tasks
kornia.morphologya module to perform morphological operations
kornia.utilsimage to tensor utilities and metrics for vision problems

kornia examples

- UDA - a simple data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

The details are available here: UNSUPERVISED DATA AUGMENTATION FOR CONSISTENCY TRAINING

- Data augmentation for object detection - Repository contains a code for the paper space tutorial series on adapting data augmentation methods for object detection tasks. They support a lot of data augmentations, like Horizontal Flipping, Scaling, Translation, Rotation, Shearing, Resizing.

Data augmentation for object detection - exmpale

- FMix - Understanding and Enhancing Mixed Sample Data Augmentation This repository contains the official implementation of the paper 'Understanding and Enhancing Mixed Sample Data Augmentation'

fmix example

- Super-AND - This repository is the Pytorch implementation of "A Comprehensive Approach to Unsupervised Embedding Learning based on AND Algorithm.

qualitative1.png

- vidaug - This Python library helps you with augmenting videos for your deep learning architectures. It converts input videos into a new, much larger set of slightly altered videos.

- Image augmentor - This is a simple Python data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

- torchsample - this python package provides High-Level Training, Data Augmentation, and Utilities for Pytorch. This toolbox provides data augmentation methods, regularizers and other utility functions. These transforms work directly on torch tensors:

  • Compose()
  • AddChannel()
  • SwapDims()
  • RangeNormalize()
  • StdNormalize()
  • Slice2D()
  • RandomCrop()
  • SpecialCrop()
  • Pad()
  • RandomFlip()

- Random erasing - The code is based on the paper: https://arxiv.org/abs/1708.04896. The Abstract:

In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: this https URL.

Example of random erasing

- data augmentation in C++ - Simple image

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多