data-augmentation-review

data-augmentation-review

全面数据增强技术助力机器学习模型优化

该项目汇集了多领域数据增强资源,包括计算机视觉、自然语言处理、音频和时间序列分析。内容涵盖GitHub仓库、开源库、学术论文等,详细介绍了图像变换、文本生成、音频处理等增强技术。此外,还收录了自动增强和特定领域增强方法,为机器学习研究人员和实践者提供了全面的数据增强参考。

数据增强计算机视觉机器学习GitHubPython库Github开源项目

DOI Visits Badge

Looking for a person who would like to help me maintain this repository! Contact me on LN or simply add a PR!

Data augmentation

List of useful data augmentation resources. You will find here some links to more or less popular github repos :sparkles:, libraries, papers :books: and other information.

Do you like it? Feel free to :star: ! Feel free to make a pull request!

Featured ⭐

Data augmentation for bias mitigation?

  • Targeted Data Augmentation for bias mitigation; Agnieszka Mikołajczyk-Bareła, Maria Ferlin, Michał Grochowski; The development of fair and ethical AI systems requires careful consideration of bias mitigation, an area often overlooked or ignored. In this study, we introduce a novel and efficient approach for addressing biases called Targeted Data Augmentation (TDA), which leverages classical data augmentation techniques to tackle the pressing issue of bias in data and models. Unlike the laborious task of removing biases, our method proposes to insert biases instead, resulting in improved performance. (...)

Introduction

Data augmentation can be simply described as any method that makes our dataset larger by making modified copies of the existing dataset. To create more images for example, we could zoom in and save the result, we could change the brightness of the image or rotate it. To get a bigger sound dataset we could try to raise or lower the pitch of the audio sample or slow down/speed up. Example data augmentation techniques are presented in the diagram below.

data augmentation diagram

DATA AUGMENTATION

  • Images augmentation

    • Affine transformations
      • Rotation
      • Scaling
      • Random cropping
      • Reflection
    • Elastic transformations
      • Contrast shift
      • Brightness shift
      • Blurring
      • Channel shuffle
    • Advanced transformations
      • Random erasing
      • Adding rain effects, sun flare...
      • Image blending
    • Neural-based transformations
      • Adversarial noise
      • Neural Style Transfer
      • Generative Adversarial Networks
  • Audio augmentation

    • Noise injection
    • Time shift
    • Time stretching
    • Random cropping
    • Pitch scaling
    • Dynamic range compression
    • Simple gain
    • Equalization
    • Voice conversion (Speech)
  • Natural Language Processing augmentation

    • Thesaurus
    • Text Generation
    • Back Translation
    • Word Embeddings
    • Contextualized Word Embeddings
    • Paraphrasing
    • Text perturbation
  • Time Series Data Augmentation

    • Basic approaches
      • Warping
      • Jittering
      • Perturbing
    • Advanced approaches
      • Embedding space
      • GAN/Adversarial
      • RL/Meta-Learning
  • Graph Augmentation

    • Node/edge dropping
    • Node/edge addition (graph modification)
    • Edge perturbation
  • Gene expression Augmentation

    • Data generation with GANs
    • Mixing observations
    • Random variable insertion
  • Automatic Augmentation (AutoAugment)

  • Other
    • Keypoints/landmarks Augmentation - usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping)
    • Spectrograms/Melspectrograms - usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)

If you wish to cite us, you can cite the following paper of your choice: Style transfer-based image synthesis as an efficient regularization technique in deep learning or Data augmentation for improving deep learning in image classification problem.

Star History Chart

Repositories

Computer vision

- albumentations is a Python library with a set of useful, large, and diverse data augmentation methods. It offers over 30 different types of augmentations, easy and ready to use. Moreover, as the authors prove, the library is faster than other libraries on most of the transformations.

Example Jupyter notebooks:

Example transformations: albumentations examples

- imgaug - is another very useful and widely used Python library. As the author describes: it helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much larger set of slightly altered images. It offers many augmentation techniques such as affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, and blurring.

Example Jupyter notebooks:

Example transformations: imgaug examples

- Kornia - is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.

At a granular level, Kornia is a library that consists of the following components:

ComponentDescription
korniaa Differentiable Computer Vision library, with strong GPU support
kornia.augmentationa module to perform data augmentation in the GPU
kornia.colora set of routines to perform color space conversions
kornia.contriba compilation of user contributed and experimental operators
kornia.enhancea module to perform normalization and intensity transformation
kornia.featurea module to perform feature detection
kornia.filtersa module to perform image filtering and edge detection
kornia.geometrya geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models
kornia.lossesa stack of loss functions to solve different vision tasks
kornia.morphologya module to perform morphological operations
kornia.utilsimage to tensor utilities and metrics for vision problems

kornia examples

- UDA - a simple data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

The details are available here: UNSUPERVISED DATA AUGMENTATION FOR CONSISTENCY TRAINING

- Data augmentation for object detection - Repository contains a code for the paper space tutorial series on adapting data augmentation methods for object detection tasks. They support a lot of data augmentations, like Horizontal Flipping, Scaling, Translation, Rotation, Shearing, Resizing.

Data augmentation for object detection - exmpale

- FMix - Understanding and Enhancing Mixed Sample Data Augmentation This repository contains the official implementation of the paper 'Understanding and Enhancing Mixed Sample Data Augmentation'

fmix example

- Super-AND - This repository is the Pytorch implementation of "A Comprehensive Approach to Unsupervised Embedding Learning based on AND Algorithm.

qualitative1.png

- vidaug - This Python library helps you with augmenting videos for your deep learning architectures. It converts input videos into a new, much larger set of slightly altered videos.

- Image augmentor - This is a simple Python data augmentation tool for image files, intended for use with machine learning data sets. The tool scans a directory containing image files, and generates new images by performing a specified set of augmentation operations on each file that it finds. This process multiplies the number of training examples that can be used when developing a neural network, and should significantly improve the resulting network's performance, particularly when the number of training examples is relatively small.

- torchsample - this python package provides High-Level Training, Data Augmentation, and Utilities for Pytorch. This toolbox provides data augmentation methods, regularizers and other utility functions. These transforms work directly on torch tensors:

  • Compose()
  • AddChannel()
  • SwapDims()
  • RangeNormalize()
  • StdNormalize()
  • Slice2D()
  • RandomCrop()
  • SpecialCrop()
  • Pad()
  • RandomFlip()

- Random erasing - The code is based on the paper: https://arxiv.org/abs/1708.04896. The Abstract:

In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: this https URL.

Example of random erasing

- data augmentation in C++ - Simple image

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多