AutoQuant

AutoQuant

开源自动化机器学习工具包

AutoQuant是一个开源的自动化机器学习工具包,旨在提升模型开发和运营效率。它集成了CatBoost、LightGBM、XGBoost和H2O等先进算法,支持GPU和CPU计算。该工具包涵盖了特征工程、模型训练、评估和部署等机器学习全流程。AutoQuant在多个行业应用中表现出色,为数据科学家提供了一个高效的机器学习开发平台。

AutoCatBoostRegression机器学习回归模型自动化建模模型评估Github开源项目

Version: 1.0.0 Build: Passing Maintenance PRs Welcome GitHub Stars

<img src="https://github.com/AdrianAntico/AutoQuant/blob/master/Images/AutoQuant.PNG?raw=true" align="center" width="800" />

AutoQuant Reference Manual

AutoQuant Reference Manual

Companion Packages:

  • Quantico
  • Rodeo
  • AutoPlots

Table of Contents

Documentation + Code Examples

Background

<details><summary>Expand to view content</summary> <p>

Automated Machine Learning - In my view, AutoML should consist of functions to help make professional model development and operationalization more efficient. The functions in this package are there to help no matter which part of the ML lifecycle you are working on. The functions in this package have been tested across a variety of industries and have consistently outperformed competing methods.

Package Details

Supervised Learning - Currently, I'm utilizing CatBoost, LightGBM, XGBoost, and H2O for all of the automated Machine Learning related functions. GPU's can be utilized with CatBoost, LightGBM, and XGBoost, while those and the H2O models can all utilize 100% of CPU. Multi-armed bandit grid tuning is available for CatBoost, LightGBM, and XGBoost models, which utilize the concept of randomized probability matching, which is detailed in the R pacakge "bandit". My choice of included ML algorithms in the package is based on previous success when compared against other algorithms on real world use cases, the additional utilities these packages offer aside from accurate predictions, their ability to work on big data, and the fact that they're available in both R and Python which makes managing multiple languages a little more seamless in a professional setting.

Documentation - Each exported function in the package has a help file and can be viewed in your RStudio session, e.g. <code>?Rodeo::ModelDataPrep</code>. Many of them come with examples coded up in the help files (at the bottom) that you can run to get a feel for how to set the parameters. There's also a listing of exported functions by category with code examples at the bottom of this readme. You can also jump into the R folder here to dig into the source code.

Overall process: Typically, I go to the warehouse to get all of my base features and then I run through all the relevant feature engineering functions in this package. Personally, I set up templates for features engineering, model training optimization, and model scoring (including feature engineering for scoring). I collect all relevant metdata in a list that is shared across templates and as a result, I never have to touch the model scoring template, which makes operationalize and maintenace a breeze. I can simply list out the columns of interest, which feature engineering functions I want to utilize, and then I simply kick off some command line scripts and everything else is automatically managed.

</p> </details>

Installation

The Description File is designed to require only the minimum number of packages to install AutoQuant. However, in order to utilize most of the functions in the package, you'll have to install additional libraries. I set it up this way on purpose. You don't need to install every single possible dependency if you are only interested in using a few of the functions. For example, if you only want to use CatBoost then install the catboost package and forget about the h2o, xgboost, and lightgbm packages. This is one of the primary benefits of not hosting an R package on cran, as they require dependencies to be part of the Imports section on the Description File, which subsequently requires users to have all dependencies installed in order to install the package.

The minimal set of packages that need to be installed are below. The full list can be found by expanding the section (Expand to view content).

  • bit64
  • data.table
  • doParallel
  • foreach
  • lubridate
  • timeDate
# Core pacakges if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table") if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse") if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64") if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel") if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach") if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate") if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate") # AutoQuant devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)
<details><summary>Additional Packages to Install</summary> <p>

Install ALL R package dependencies for all functions:

XGBoost and LightGBM can be used with GPU. However, their installation is much more involved than CatBoost, which comes with GPU capabilities simply by installing their package. The installation instructions for them below is for the CPU version only. Refer to each's home page for instructions for installing for GPU.

# Install Dependencies---- if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") # Core pacakges if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table") if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse") if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64") if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel") if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach") if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate") if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate") # Additional dependencies for specific use cases if(!("combinat" %in% rownames(installed.packages()))) install.packages("combinat"); print("combinat") if(!("DBI" %in% rownames(installed.packages()))) install.packages("DBI"); print("DBI") if(!("e1071" %in% rownames(installed.packages()))) install.packages("e1071"); print("e1071") if(!("fBasics" %in% rownames(installed.packages()))) install.packages("fBasics"); print("fBasics") if(!("forecast" %in% rownames(installed.packages()))) install.packages("forecast"); print("forecast") if(!("fpp" %in% rownames(installed.packages()))) install.packages("fpp"); print("fpp") if(!("ggplot2" %in% rownames(installed.packages()))) install.packages("ggplot2"); print("ggplot2") if(!("gridExtra" %in% rownames(installed.packages()))) install.packages("gridExtra"); print("gridExtra") if(!("itertools" %in% rownames(installed.packages()))) install.packages("itertools"); print("itertools") if(!("MLmetrics" %in% rownames(installed.packages()))) install.packages("MLmetrics"); print("MLmetrics") if(!("nortest" %in% rownames(installed.packages()))) install.packages("nortest"); print("nortest") if(!("pROC" %in% rownames(installed.packages()))) install.packages("pROC"); print("pROC") if(!("RColorBrewer" %in% rownames(installed.packages()))) install.packages("RColorBrewer"); print("RColorBrewer") if(!("recommenderlab" %in% rownames(installed.packages()))) install.packages("recommenderlab"); print("recommenderlab") if(!("RPostgres" %in% rownames(installed.packages()))) install.packages("RPostgres"); print("RPostgres") if(!("Rfast" %in% rownames(installed.packages()))) install.packages("Rfast"); print("Rfast") if(!("scatterplot3d" %in% rownames(installed.packages()))) install.packages("scatterplot3d"); print("scatterplot3d") if(!("stringr" %in% rownames(installed.packages()))) install.packages("stringr"); print("stringr") if(!("tsoutliers" %in% rownames(installed.packages()))) install.packages("tsoutliers"); print("tsoutliers") if(!("xgboost" %in% rownames(installed.packages()))) install.packages("xgboost"); print("xgboost") if(!("lightgbm" %in% rownames(installed.packages()))) install.packages("lightgbm"); print("lightgbm") if(!("regmedint" %in% rownames(installed.packages()))) install.packages("regmedint"); print("regmedint") for(pkg in c("RCurl","jsonlite")) if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) } install.packages("h2o", type = "source", repos = (c("http://h2o-release.s3.amazonaws.com/h2o/latest_stable_R"))) devtools::install_github('catboost/catboost', subdir = 'catboost/R-package') # Dependencies for ML Reports if(!("reactable" %in% rownames(installed.packages()))) install.packages("reactable"); print("reactable") devtools::install_github('AdrianAntico/prettydoc', upgrade = FALSE, dependencies = FALSE, force = TRUE) # And lastly, AutoQuant devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)

Installation Troubleshooting

The most common issue some users are having when trying to install <code>AutoQuant</code> is the installation of the <code>catboost</code> package dependency. Since <code>catboost</code> is not on CRAN it can only be installed through GitHub. To install <code>catboost</code> without error (and consequently install <code>AutoQuant</code> without error), try running this line of code first, then restart your R session, then re-run the 2-step installation process above. (<a href="https://github.com/catboost/catboost/issues/612" target="_blank">Reference</a>): If you're still having trouble submit an issue and I'll work with you to get it installed.

# Method for on premise servers options(devtools.install.args = c("--no-multiarch", "--no-test-load")) install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load")) # Method for azure machine learning Designer pipelines ## catboost install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load")) ## AutoQuant install.packages("https://github.com/AdrianAntico/AutoQuant/archive/refs/tags/<version>.tar.gz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load"))
</p> </details>

Usage

Supervised Learning <img src="https://raw.githubusercontent.com/AdrianAntico/AutoQuant/master/Images/SupervisedLearningImage.png" align="right" width="80" />

<details><summary>Expand to view content</summary> <p>

Regression

<details><summary>click to expand</summary> <p> <details><summary>Regression Description</summary> <p>

The Auto_Regression() models handle a multitude of tasks. In order:

  1. Convert your data to data.table format for faster processing
  2. Transform your target variable using the best normalization method based on the <code>AutoTransformationCreate()</code> function
  3. Create train, validation, and test data, utilizing the <code>AutoDataPartition()</code> function, if you didn't supply those directly to the function
  4. Consoldate columns that are used for modeling and what metadata you want returned in your test data with predictions
  5. Dichotomize categorical variables (for <code>AutoXGBoostRegression()</code>) and save the factor levels for scoring in a way that guarentees consistency across training, validation, and test data sets, utilizing the <code>DummifyDT()</code> function
  6. Save the final modeling column names for reference
  7. Handles the data conversion to the appropriate modeling type, such as CatBoost, H2O, and XGBoost
  8. Multi-armed bandit hyperparameter tuning using randomized probability matching, if you choose to grid tune
  9. Loop through the grid-tuning process, building N models
  10. Collect the evaluation metrics for each grid tune run
  11. Identify the best model of the set of models built in the grid tuning search
  12. Save the hyperparameters from the winning grid tuned model
  13. Build the final model based on the best model from the grid tuning model search (I remove each model after evaluation metrics are generated in the grid tune to avoid memory overflow)
  14. Back-transform your predictions based on the best transformation used earlier in the process
  15. Collect evaluation metrics based on performance on test data (based on back-transformed data)
  16. Store the final predictions with the associated test data and other columns you want included in that set
  17. Save your transformation metadata for recreating them in a scoring process
  18. Build out and save an Evaluation Calibration Line Plot and Evaluation Calibration Box-Plot, using the <code>EvalPlot()</code> function
  19. Generate and save Variable Importance
  20. Generate and save Partital Dependence Calibration Line Plots and Partital Dependence Calibration Box-Plots, using the <code>ParDepPlots()</code> function
  21. Return all the objects generated in a named list for immediate use and evaluation
</p> </details> <details><summary>CatBoost Example</summary> <p>
# Create some dummy correlated data data <- AutoQuant::FakeDataGenerator( Correlation = 0.85, N = 10000, ID = 2, ZIP = 0, AddDate = FALSE, Classification = FALSE, MultiClass = FALSE) # Run function TestModel <- AutoQuant::AutoCatBoostRegression( # GPU or CPU and the number of available GPUs TrainOnFull = FALSE, task_type = 'GPU', NumGPUs = 1, DebugMode = FALSE, # Metadata args OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'), ModelID = 'Test_Model_1', model_path = normalizePath('./'), metadata_path = normalizePath('./'), SaveModelObjects = FALSE, SaveInfoToPDF = FALSE, ReturnModelObjects = TRUE, # Data args data = data, ValidationData = NULL, TestData = NULL, TargetColumnName = 'Adrian', FeatureColNames = names(data)[!names(data) %in% c('IDcol_1', 'IDcol_2','Adrian')], PrimaryDateColumn = NULL, WeightsColumnName = NULL, IDcols = c('IDcol_1','IDcol_2'), TransformNumericColumns = 'Adrian', Methods = c('BoxCox', 'Asinh', 'Asin', 'Log', 'LogPlus1', 'Sqrt', 'Logit'), # Model evaluation eval_metric = 'RMSE', eval_metric_value = 1.5, loss_function = 'RMSE', loss_function_value = 1.5, MetricPeriods = 10L, NumOfParDepPlots = ncol(data)-1L-2L, # Grid tuning args PassInGrid = NULL, GridTune = FALSE,

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多