AutoQuant

AutoQuant

开源自动化机器学习工具包

AutoQuant是一个开源的自动化机器学习工具包,旨在提升模型开发和运营效率。它集成了CatBoost、LightGBM、XGBoost和H2O等先进算法,支持GPU和CPU计算。该工具包涵盖了特征工程、模型训练、评估和部署等机器学习全流程。AutoQuant在多个行业应用中表现出色,为数据科学家提供了一个高效的机器学习开发平台。

AutoCatBoostRegression机器学习回归模型自动化建模模型评估Github开源项目

Version: 1.0.0 Build: Passing Maintenance PRs Welcome GitHub Stars

<img src="https://github.com/AdrianAntico/AutoQuant/blob/master/Images/AutoQuant.PNG?raw=true" align="center" width="800" />

AutoQuant Reference Manual

AutoQuant Reference Manual

Companion Packages:

  • Quantico
  • Rodeo
  • AutoPlots

Table of Contents

Documentation + Code Examples

Background

<details><summary>Expand to view content</summary> <p>

Automated Machine Learning - In my view, AutoML should consist of functions to help make professional model development and operationalization more efficient. The functions in this package are there to help no matter which part of the ML lifecycle you are working on. The functions in this package have been tested across a variety of industries and have consistently outperformed competing methods.

Package Details

Supervised Learning - Currently, I'm utilizing CatBoost, LightGBM, XGBoost, and H2O for all of the automated Machine Learning related functions. GPU's can be utilized with CatBoost, LightGBM, and XGBoost, while those and the H2O models can all utilize 100% of CPU. Multi-armed bandit grid tuning is available for CatBoost, LightGBM, and XGBoost models, which utilize the concept of randomized probability matching, which is detailed in the R pacakge "bandit". My choice of included ML algorithms in the package is based on previous success when compared against other algorithms on real world use cases, the additional utilities these packages offer aside from accurate predictions, their ability to work on big data, and the fact that they're available in both R and Python which makes managing multiple languages a little more seamless in a professional setting.

Documentation - Each exported function in the package has a help file and can be viewed in your RStudio session, e.g. <code>?Rodeo::ModelDataPrep</code>. Many of them come with examples coded up in the help files (at the bottom) that you can run to get a feel for how to set the parameters. There's also a listing of exported functions by category with code examples at the bottom of this readme. You can also jump into the R folder here to dig into the source code.

Overall process: Typically, I go to the warehouse to get all of my base features and then I run through all the relevant feature engineering functions in this package. Personally, I set up templates for features engineering, model training optimization, and model scoring (including feature engineering for scoring). I collect all relevant metdata in a list that is shared across templates and as a result, I never have to touch the model scoring template, which makes operationalize and maintenace a breeze. I can simply list out the columns of interest, which feature engineering functions I want to utilize, and then I simply kick off some command line scripts and everything else is automatically managed.

</p> </details>

Installation

The Description File is designed to require only the minimum number of packages to install AutoQuant. However, in order to utilize most of the functions in the package, you'll have to install additional libraries. I set it up this way on purpose. You don't need to install every single possible dependency if you are only interested in using a few of the functions. For example, if you only want to use CatBoost then install the catboost package and forget about the h2o, xgboost, and lightgbm packages. This is one of the primary benefits of not hosting an R package on cran, as they require dependencies to be part of the Imports section on the Description File, which subsequently requires users to have all dependencies installed in order to install the package.

The minimal set of packages that need to be installed are below. The full list can be found by expanding the section (Expand to view content).

  • bit64
  • data.table
  • doParallel
  • foreach
  • lubridate
  • timeDate
# Core pacakges if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table") if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse") if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64") if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel") if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach") if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate") if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate") # AutoQuant devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)
<details><summary>Additional Packages to Install</summary> <p>

Install ALL R package dependencies for all functions:

XGBoost and LightGBM can be used with GPU. However, their installation is much more involved than CatBoost, which comes with GPU capabilities simply by installing their package. The installation instructions for them below is for the CPU version only. Refer to each's home page for instructions for installing for GPU.

# Install Dependencies---- if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") # Core pacakges if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table") if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse") if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64") if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools") if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel") if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach") if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate") if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate") # Additional dependencies for specific use cases if(!("combinat" %in% rownames(installed.packages()))) install.packages("combinat"); print("combinat") if(!("DBI" %in% rownames(installed.packages()))) install.packages("DBI"); print("DBI") if(!("e1071" %in% rownames(installed.packages()))) install.packages("e1071"); print("e1071") if(!("fBasics" %in% rownames(installed.packages()))) install.packages("fBasics"); print("fBasics") if(!("forecast" %in% rownames(installed.packages()))) install.packages("forecast"); print("forecast") if(!("fpp" %in% rownames(installed.packages()))) install.packages("fpp"); print("fpp") if(!("ggplot2" %in% rownames(installed.packages()))) install.packages("ggplot2"); print("ggplot2") if(!("gridExtra" %in% rownames(installed.packages()))) install.packages("gridExtra"); print("gridExtra") if(!("itertools" %in% rownames(installed.packages()))) install.packages("itertools"); print("itertools") if(!("MLmetrics" %in% rownames(installed.packages()))) install.packages("MLmetrics"); print("MLmetrics") if(!("nortest" %in% rownames(installed.packages()))) install.packages("nortest"); print("nortest") if(!("pROC" %in% rownames(installed.packages()))) install.packages("pROC"); print("pROC") if(!("RColorBrewer" %in% rownames(installed.packages()))) install.packages("RColorBrewer"); print("RColorBrewer") if(!("recommenderlab" %in% rownames(installed.packages()))) install.packages("recommenderlab"); print("recommenderlab") if(!("RPostgres" %in% rownames(installed.packages()))) install.packages("RPostgres"); print("RPostgres") if(!("Rfast" %in% rownames(installed.packages()))) install.packages("Rfast"); print("Rfast") if(!("scatterplot3d" %in% rownames(installed.packages()))) install.packages("scatterplot3d"); print("scatterplot3d") if(!("stringr" %in% rownames(installed.packages()))) install.packages("stringr"); print("stringr") if(!("tsoutliers" %in% rownames(installed.packages()))) install.packages("tsoutliers"); print("tsoutliers") if(!("xgboost" %in% rownames(installed.packages()))) install.packages("xgboost"); print("xgboost") if(!("lightgbm" %in% rownames(installed.packages()))) install.packages("lightgbm"); print("lightgbm") if(!("regmedint" %in% rownames(installed.packages()))) install.packages("regmedint"); print("regmedint") for(pkg in c("RCurl","jsonlite")) if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) } install.packages("h2o", type = "source", repos = (c("http://h2o-release.s3.amazonaws.com/h2o/latest_stable_R"))) devtools::install_github('catboost/catboost', subdir = 'catboost/R-package') # Dependencies for ML Reports if(!("reactable" %in% rownames(installed.packages()))) install.packages("reactable"); print("reactable") devtools::install_github('AdrianAntico/prettydoc', upgrade = FALSE, dependencies = FALSE, force = TRUE) # And lastly, AutoQuant devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)

Installation Troubleshooting

The most common issue some users are having when trying to install <code>AutoQuant</code> is the installation of the <code>catboost</code> package dependency. Since <code>catboost</code> is not on CRAN it can only be installed through GitHub. To install <code>catboost</code> without error (and consequently install <code>AutoQuant</code> without error), try running this line of code first, then restart your R session, then re-run the 2-step installation process above. (<a href="https://github.com/catboost/catboost/issues/612" target="_blank">Reference</a>): If you're still having trouble submit an issue and I'll work with you to get it installed.

# Method for on premise servers options(devtools.install.args = c("--no-multiarch", "--no-test-load")) install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load")) # Method for azure machine learning Designer pipelines ## catboost install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load")) ## AutoQuant install.packages("https://github.com/AdrianAntico/AutoQuant/archive/refs/tags/<version>.tar.gz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load"))
</p> </details>

Usage

Supervised Learning <img src="https://raw.githubusercontent.com/AdrianAntico/AutoQuant/master/Images/SupervisedLearningImage.png" align="right" width="80" />

<details><summary>Expand to view content</summary> <p>

Regression

<details><summary>click to expand</summary> <p> <details><summary>Regression Description</summary> <p>

The Auto_Regression() models handle a multitude of tasks. In order:

  1. Convert your data to data.table format for faster processing
  2. Transform your target variable using the best normalization method based on the <code>AutoTransformationCreate()</code> function
  3. Create train, validation, and test data, utilizing the <code>AutoDataPartition()</code> function, if you didn't supply those directly to the function
  4. Consoldate columns that are used for modeling and what metadata you want returned in your test data with predictions
  5. Dichotomize categorical variables (for <code>AutoXGBoostRegression()</code>) and save the factor levels for scoring in a way that guarentees consistency across training, validation, and test data sets, utilizing the <code>DummifyDT()</code> function
  6. Save the final modeling column names for reference
  7. Handles the data conversion to the appropriate modeling type, such as CatBoost, H2O, and XGBoost
  8. Multi-armed bandit hyperparameter tuning using randomized probability matching, if you choose to grid tune
  9. Loop through the grid-tuning process, building N models
  10. Collect the evaluation metrics for each grid tune run
  11. Identify the best model of the set of models built in the grid tuning search
  12. Save the hyperparameters from the winning grid tuned model
  13. Build the final model based on the best model from the grid tuning model search (I remove each model after evaluation metrics are generated in the grid tune to avoid memory overflow)
  14. Back-transform your predictions based on the best transformation used earlier in the process
  15. Collect evaluation metrics based on performance on test data (based on back-transformed data)
  16. Store the final predictions with the associated test data and other columns you want included in that set
  17. Save your transformation metadata for recreating them in a scoring process
  18. Build out and save an Evaluation Calibration Line Plot and Evaluation Calibration Box-Plot, using the <code>EvalPlot()</code> function
  19. Generate and save Variable Importance
  20. Generate and save Partital Dependence Calibration Line Plots and Partital Dependence Calibration Box-Plots, using the <code>ParDepPlots()</code> function
  21. Return all the objects generated in a named list for immediate use and evaluation
</p> </details> <details><summary>CatBoost Example</summary> <p>
# Create some dummy correlated data data <- AutoQuant::FakeDataGenerator( Correlation = 0.85, N = 10000, ID = 2, ZIP = 0, AddDate = FALSE, Classification = FALSE, MultiClass = FALSE) # Run function TestModel <- AutoQuant::AutoCatBoostRegression( # GPU or CPU and the number of available GPUs TrainOnFull = FALSE, task_type = 'GPU', NumGPUs = 1, DebugMode = FALSE, # Metadata args OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'), ModelID = 'Test_Model_1', model_path = normalizePath('./'), metadata_path = normalizePath('./'), SaveModelObjects = FALSE, SaveInfoToPDF = FALSE, ReturnModelObjects = TRUE, # Data args data = data, ValidationData = NULL, TestData = NULL, TargetColumnName = 'Adrian', FeatureColNames = names(data)[!names(data) %in% c('IDcol_1', 'IDcol_2','Adrian')], PrimaryDateColumn = NULL, WeightsColumnName = NULL, IDcols = c('IDcol_1','IDcol_2'), TransformNumericColumns = 'Adrian', Methods = c('BoxCox', 'Asinh', 'Asin', 'Log', 'LogPlus1', 'Sqrt', 'Logit'), # Model evaluation eval_metric = 'RMSE', eval_metric_value = 1.5, loss_function = 'RMSE', loss_function_value = 1.5, MetricPeriods = 10L, NumOfParDepPlots = ncol(data)-1L-2L, # Grid tuning args PassInGrid = NULL, GridTune = FALSE,

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多