XNNPACK: 高效的神经网络推理库

RayRay
XNNPACK神经网络推理移动平台优化深度学习框架算子支持Github开源项目

XNNPACK简介

XNNPACK是Google开发的一个高度优化的神经网络推理库,专为移动设备、服务器和Web平台提供高效的浮点神经网络推理运算。它是一个低级别的性能原语库,主要用于加速高级机器学习框架,如TensorFlow Lite、TensorFlow.js、PyTorch、ONNX Runtime和MediaPipe等。

XNNPACK的设计目标是在保证高性能的同时,支持多种硬件平台和神经网络运算符。它针对ARM、x86、WebAssembly和RISC-V等平台进行了深度优化,可以充分发挥各种硬件的计算能力。

支持的硬件平台

XNNPACK支持以下硬件平台:

  • ARM64:支持Android、iOS、macOS、Linux和Windows
  • ARMv7(带NEON):支持Android
  • ARMv6(带VFPv2):支持Linux
  • x86和x86-64(支持AVX512):支持Windows、Linux、macOS、Android和iOS模拟器
  • WebAssembly MVP
  • WebAssembly SIMD
  • WebAssembly Relaxed SIMD(实验性)
  • RISC-V (RV32GC和RV64GC)

这种广泛的平台支持使XNNPACK成为跨平台神经网络部署的理想选择。

支持的运算符

XNNPACK实现了神经网络中常用的大量运算符,包括但不限于:

  • 2D卷积(包括分组卷积和深度卷积)
  • 2D反卷积(又称转置卷积)
  • 2D平均池化和最大池化
  • 全连接层
  • 激活函数(ReLU、Sigmoid、Tanh等)
  • 归一化操作
  • 张量运算(加、减、乘、除等)

所有运算符都支持NHWC布局,并且允许沿着通道维度进行自定义步长。这意味着运算符可以只处理输入张量的一部分通道,为实现零成本的通道分割和连接提供了可能。

XNNPACK支持的运算符示意图

性能表现

XNNPACK在移动设备上展现出优异的性能。下面是在三代Pixel手机上运行MobileNet系列模型的单线程性能数据:

模型Pixel (ms)Pixel 2 (ms)Pixel 3a (ms)
FP32 MobileNet v1 1.0X828688
FP32 MobileNet v2 1.0X495355
FP32 MobileNet v3 Large394244
FP32 MobileNet v3 Small121414

多线程性能更加出色:

模型Pixel (ms)Pixel 2 (ms)Pixel 3a (ms)
FP32 MobileNet v1 1.0X432746
FP32 MobileNet v2 1.0X261828
FP32 MobileNet v3 Large221624
FP32 MobileNet v3 Small768

XNNPACK在Raspberry Pi等嵌入式设备上也表现不俗。以下是在不同代Raspberry Pi上的多线程性能数据:

模型RPi Zero W (ms)RPi 2 (ms)RPi 3+ (ms)RPi 4 (ms)RPi 4 ARM64 (ms)
FP32 MobileNet v1 1.0X39193021147277
FP32 MobileNet v2 1.0X1987191794146
FP32 MobileNet v3 Large1658161673840
FP32 MobileNet v3 Small47450221315
INT8 MobileNet v1 1.0X2589128462924
INT8 MobileNet v2 1.0X149582302017

这些数据充分展示了XNNPACK在不同硬件平台上的优异性能表现。

最新进展:动态范围量化

最近,XNNPACK在全连接和2D卷积运算符中新增了对动态范围量化的支持。这一改进使得推理性能相比单精度基准提升了4倍。动态范围量化是介于全整数量化和单精度浮点推理之间的一种折中方案,它在保持较高精度的同时,可以获得接近全整数量化的性能提升。

动态范围量化性能对比

在EfficientNetV2、Inception-v3、Deeplab-v3等模型上,动态范围量化的性能已经可以与全整数量化相媲美,甚至在某些情况下表现更佳。这一改进使得更多AI功能可以部署到老旧和低端设备上。

使用XNNPACK

XNNPACK已经集成到多个主流机器学习框架中,包括:

对于想要直接使用XNNPACK的开发者,该项目提供了C API。但需要注意的是,XNNPACK主要面向框架开发者,而非直接面向深度学习实践者和研究人员。

构建要求

要构建XNNPACK,需要满足以下最低要求:

  • C11
  • C++14
  • Python 3

总结

XNNPACK是一个强大的神经网络推理库,为移动设备、服务器和Web平台提供了高效的浮点运算支持。它优秀的跨平台性能和广泛的运算符支持,使其成为部署深度学习模型的理想选择。随着动态范围量化等新特性的加入,XNNPACK正在不断提升其性能和适用范围,为更多设备带来AI能力。

无论您是框架开发者还是对高性能神经网络推理感兴趣的研究人员,XNNPACK都值得您深入了解和尝试。欢迎访问XNNPACK的GitHub仓库以获取更多信息。

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多