近年来,视觉语言模型(Vision-Language Models, VLMs)在计算机视觉领域引起了广泛关注。VLMs通过学习图像和文本之间的关联,可以实现零样本预测,在多种视觉任务上取得了令人瞩目的成果。本文将对VLMs在视觉任务中的应用进行全面综述,包括VLM的预训练方法、迁移学习方法和知识蒸馏方法,并对未来研究方向进行展望。
VLM的预训练通常采用大规模的图文对数据集,主要包括以下三类方法:
对比学习是VLM预训练的主流方法之一。其核心思想是最大化匹配的图文对的相似度,同时最小化不匹配图文对的相似度。代表性工作包括:
CLIP (Contrastive Language-Image Pre-training): 使用4亿个图文对进行预训练,在多个下游任务上实现了零样本迁移。
ALIGN: 使用18亿个图文对进行预训练,进一步扩大了数据规模。
FILIP: 引入细粒度的图像-文本交互,提高了模型性能。
PyramidCLIP: 利用多尺度特征对齐提升模型表达能力。
生成式预训练通过重建图像或文本来学习多模态表示。代表性工作包括:
FLAVA: 同时进行图像重建、文本重建和图文匹配预训练。
CoCa: 结合对比学习和生成式预训练,实现了更好的性能。
SAM (Segment Anything Model): 通过图像分割任务进行预训练,可以实现零样本分割。
对齐式预训练旨在学习图像区域与文本之间的细粒度对应关系。代表性工作包括:
GLIP: 通过目标检测任务学习图像区域与文本的对齐。
DetCLIP: 引入词典增强的视觉概念并行预训练。
为了将预训练的VLM应用到下游任务,研究人员提出了多种迁移学习方法:
提示调优通过学习任务相关的提示来适应下游任务,主要包括:
特征适配通过在原有模型基础上添加少量可训练参数来实现迁移学习:
为了将VLM的知识迁移到下游任务专用模型中,研究人员提出了多种知识蒸馏方法:
尽管VLM在视觉任务中取得了显著进展,但仍存在一些挑战和潜在的研究方向:
大规模多模态预训练:如何更有效地利用大规模图文数据进行预训练,是未来研究的重要方向。
模型压缩与加速:如何在保持性能的同时,减小模型规模、提高推理速度,是VLM实际应用的关键问题。
跨语言跨模态迁移:如何实现VLM在不同语言和模态之间的高效迁移,值得进一步探索。
细粒度视觉-语言对齐:如何学习更精确的视觉区域与文本的对应关系,是提升VLM性能的重要途径。
可解释性与鲁棒性:如何提高VLM的可解释性和对抗攻击的鲁棒性,是保证模型可靠性的关键。
多模态融合:如何更好地融合视觉、语言等多种模态的信息,是未来多模态智能的重要研究方向。
本文全面综述了视觉语言模型(VLM)在视觉任务中的应用现状,包括VLM的预训练方法、迁移学习方法和知识蒸馏方法。VLM通过学习图像和文本之间的关联,在多种视觉任务上取得了显著成果,为计算机视觉领域带来了新的研究范式。未来,大规模多模态预训练、模型压缩与加速、跨语言跨模态迁移等方向将是VLM研究的重点。相信随着研究的深入,VLM将在更多视觉任务中发挥重要作用,推动人工智能向着更高水平发展。
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (pp. 8748-8763). PMLR.
Jia, C., Yang, Y., Xia, Y., Chen, Y. T., Parekh, Z., Pham, H., ... & Le, Q. V. (2021). Scaling up visual and vision-language representation learning with noisy text supervision. In International Conference on Machine Learning (pp. 4904-4916). PMLR.
Zhang, J., Huang, J., Jin, S., & Lu, S. (2024). Vision-language models for vision tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Zhou, K., Yang, J., Loy, C. C., & Liu, Z. (2022). Learning to prompt for vision-language models. International Journal of Computer Vision, 130(9), 2337-2348.
Gao, P., Geng, S., Zhang, R., Ma, T., Fang, R., Zhang, Y., ... & Lin, D. (2022). CLIP-Adapter: Better vision-language models with feature adapters. arXiv preprint arXiv:2110.04544.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023). Segment anything. arXiv preprint arXiv:2304.02643.
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的 优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号