近年来,视觉语言模型(Vision-Language Models, VLMs)在计算机视觉领域引起了广泛关注。VLMs通过学习图像和文本之间的关联,可以实现零样本预测,在多种视觉任务上取得了令人瞩目的成果。本文将对VLMs在视觉任务中的应用进行全面综述,包括VLM的预训练方法、迁移学习方法和知识蒸馏方法,并对未来研究方向进行展望。
VLM的预训练通常采用大规模的图文对数据集,主要包括以下三类方法:
对比学习是VLM预训练的主流方法之一。其核心思想是最大化匹配的图文对的相似度,同时最小化不匹配图文对的相似度。代表性工作包括:
CLIP (Contrastive Language-Image Pre-training): 使用4亿个图文对进行预训练,在多个下游任务上实现了零样本迁移。
ALIGN: 使用18亿个图文对进行预训练,进一步扩大了数据规模。
FILIP: 引入细粒度的图像-文本交互,提高了模型性能。
PyramidCLIP: 利用多尺度特征对齐提升模型表达能力。
生成式预训练通过重建图像或文本来学习多模态表示。代表性工作包括:
FLAVA: 同时进行图像重建、文本重建和图文匹配预训练。
CoCa: 结合对比学习和生成式预训练,实现了更好的性能。
SAM (Segment Anything Model): 通过图像分割任务进行预训练,可以实现零样本分割。
对齐式预训练旨在学习图像区域与文本之间的细粒度对应关系。代表性工作包括:
GLIP: 通过目标检测任务学习图像区域与文本的对齐。
DetCLIP: 引入词典增强的视觉概念并行预训练。
为了将预训练的VLM应用到下游任务,研究人员提出了多种迁移学习方法:
提示调优通过学习任务相关的提示来适应下游任务,主要包括:
特征适配通过在原有模型基础上添加少量可训练参数来实现迁移学习:
为了将VLM的知识迁移到下游任务专用模型中,研究人员提出了多种知识蒸馏方法:
尽管VLM在视觉任务中取得了显著进展,但仍存在一些挑战和潜在的研究方向:
大规模多模态预训练:如何更有效地利用大规模图文数据进行预训练,是未来研究的重要方向。
模型压缩与加速:如何在保持性能的同时,减小模型规模、提高推理速度,是VLM实际应用的关键问题。
跨语言跨模态迁移:如何实现VLM在不同语言和模态之间的高效迁移,值得进一步探索。
细粒度视觉-语言对齐:如何学习更精确的视觉区域与文本的对应关系,是提升VLM性能的重要途径。
可解释性与鲁棒性:如何提高VLM的可解释性和对抗攻击的鲁棒性,是保证模型可靠性的关键。
多模态融合:如何更好地融合视觉、语言等多种模态的信息,是未来多模态智能的重要研究方向。
本文全面综述了视觉语言模型(VLM)在视觉任务中的应用现状,包括VLM的预训练方法、迁移学习方法和知识蒸馏方法。VLM通过学习图像和文本之间的关联,在多种视觉任务上取得了显著成果,为计算机视觉领域带来了新的研究范式。未来,大规模多模态预训练、模型压缩与加速、跨语言跨模态迁移等方向将是VLM研究的重点。相信随着研究的深入,VLM将在更多视觉任务中发挥重要作用,推动人工智能向着更高水平发展。
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (pp. 8748-8763). PMLR.
Jia, C., Yang, Y., Xia, Y., Chen, Y. T., Parekh, Z., Pham, H., ... & Le, Q. V. (2021). Scaling up visual and vision-language representation learning with noisy text supervision. In International Conference on Machine Learning (pp. 4904-4916). PMLR.
Zhang, J., Huang, J., Jin, S., & Lu, S. (2024). Vision-language models for vision tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Zhou, K., Yang, J., Loy, C. C., & Liu, Z. (2022). Learning to prompt for vision-language models. International Journal of Computer Vision, 130(9), 2337-2348.
Gao, P., Geng, S., Zhang, R., Ma, T., Fang, R., Zhang, Y., ... & Lin, D. (2022). CLIP-Adapter: Better vision-language models with feature adapters. arXiv preprint arXiv:2110.04544.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023). Segment anything. arXiv preprint arXiv:2304.02643.
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规 划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议 、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号